A VALUE-BASED THEORY OF SOFTWARE ENGINEERING

by

Apurva Jain

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

May 2008

Copyright 2008 Apurva Jain

www.manharaa.com

UMI Number: 3311031

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3311031
Copyright2008 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M|l 48106-1346

Acknowledgements

How far that little candle throws his beams! Make that three candles,
follow the beam, and you have a dissertation. | have been most fortunate to have
such three distinct guides that have carried me through in times of need, and lead
me towards success. Professors Barry Boehm, Stan Rifkin and Paul Adler, without
you | would not have been sitting today, writing this final page in concluding a
degree that only few can dream, and fewer actually achieve.

Professor Barry Boehm, the ways and things an individual can learn from
you is no less than the number of times “risk” has been used in the literature of
software engineering. This dissertation is only a part of all | have learned from
you, and | dedicate it to you with a commitment to further this research in the
coming years.

Professor Stan Rifkin, the intersection at which engineering and social
sciences meet, | thought was a place not known to any until you helped me find it.
The journey was very rough, but I would not have seen the end of this dissertation
if not for your kindness, compassion, and wonderful insights that kept me going.

Professor Paul Adler, | have had the privilege to know the likes of Marx and
Weber through your eyes. From you | have learnt to uncover knowledge at its

finest granularity, without which any research including mine would lack its depth.

www.manaraa.com

My Family, you are my family, what more can | say. | had once set a goal to
build a strong foundation for myself that is rich with education and research. This
dissertation is some evidence in fulfilling that goal. And all along, it was no luck,
but your love and support through and through.

Friends, you have brought unparalleled happiness and excitement in
almost all the things | have done in life, including this dissertation. Alex, Jesal,
Nikunj, Shamik, Steve — | thank you for your friendship and for the various forms in
which you have chimed with me in concluding this dissertation.

Thank you all.

www.manharaa.com

Table of Contents

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

CHAPTER 1: INTRODUCTION

SOFTWARE SYSTEMS — STATE OF AFFAIRS
OVERVIEW OF THE PROBLEM
Context Disconnect
Stakeholder Value Disconnect
A CASE FOR VALUE-BASED ENGINEERING OF SOFTWARE SYSTEMS
CONCEPTUAL FRAMEWORK
The 4+1 Value-Based Theories
The Process Framework
SIGNIFICANCE OF RESEARCH
LIMITATIONS
Validation Approach
RESEARCH SCOPE

CHAPTER 2: LITERATURE REVIEW

PART I: THEORIES OF SOFTWARE SYSTEMS
The Code-and-Fix Model
The Waterfall Model
The Spiral Model
Rapid Prototyping Models

PART II: CANDIDATE THEORIES FOR VBSE
Dependency Theory
Utility, Decision, and Dependencies
Control Theory

CHAPTER 3: TO THEORY

DEFINITIONS AND CONTEXT
Success
Theory

CHOICE RATIONALE
Historical Context
Theory W

A VALUE-BASED THEORY FOR DEVELOPING SOFTWARE SYSTEMS
Dependency theory
Utility Theory
Decision Theory
Control Theory

Vi
Vil
Vil

www.manharaa.com

CHAPTER 4: TO PRACTICE 84

STEP 1 84
STEP 2 85
STEP 3 86
STEPS 4,5 AND 6 86
CHAPTER 5: RESULTS 89
CasEt 1: UNIWORD 93
CASE 2: BOFA MASTERNET 95
CASE 3: MS WORD FOR WINDOWS 97
CASE 4: LONDON AMBULANCE SERVICE 99
CAsE 5: CMU SURFACE ASSESSMENT ROBOT 101
INSIGHTS 103
Preferences, risk and maturity 103

CASE 6: SMB wiTH VBSE 104
Sierra Mountainbikes Opportunities and Problems 105

Step 2: Identifying the Success-Critical Stakeholders (SCSs) 106

Step 3: Understanding SCS Value Propositions 108

Step 4: Managing Expectations; SCSs Negotiate a WinWin Decision 109
Steps 5 and 6: Planning, Executing, Monitoring, Adapting, and Controlling 112
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 117
REVIEW OF PROBLEM 117
REVIEW OF PURPOSE 118
REVIEW OF RESULTS 118
Relations to Criteria for a Good Theory 120
IMPLICATIONS 125
FUTURE WORK 126
Challenges 126

A Case for Future Work 127

Low Hanging Opportunities 128
REFERENCES 132
APPENDICES 142
APPENDIX A: ANALYSIS OF UNIWORD 142
APPENDIX B: ANALYSIS OF MASTERNET 150
APPENDIX C: ANALYSIS OF WINDOWS FOR WORD 159
APPENDIX D: LONDON AMBULANCE SERVICE 165
APPENDIX E: CMU SURFACE ASSESSMENT ROBOT 173

\'

www.manharaa.com

List of Tables

Table 1. Top Software System Risks 4
Table 2. Win-lose Generally Becomes Lose-Lose 66
Table 3. Frequent Protagonist Classes 85
Table 4. Analysis Framework 89
Table 5. Summary of Results 92
Table 6. Expected Benefits and Business Case 111
Table 7. Value-Based Expected/Actual Outcome Tracking 115

vi

www.manharaa.com

List of Figures

Figure 1. Benefits Chain as a Software System's Context
Figure 2. Value-Based vs. Value-Neutral

Figure 3. Effect of Software Reliability and Market Share Erosion on Risk
Figure 4. Organization Context

Figure 5. The 4+1 Theory — Key Constructs

Figure 6. The Process Framework

Figure 7. The Code-and-Fix Model

Figure 8. The Waterfall Model

Figure 9. The Spiral Model

Figure 10. The Rapid Prototyping Model

Figure 11. Stakeholder Utility Functions

Figure 12. Maslow's Hierarchy of Needs

Figure 13. A Feedback Control System

Figure 14. The 4+1 Theory -- Key Constructs

Figure 15. A Combined Dependency Model

Figure 16. Stakeholder Value Conflicts

Figure 17. The Process Framework

Figure 18. Benefits Chain for Sierra Supply Chain Management

12
13
14
17
18
27
29
33
34
51
52
58
70
74
77
84

107

vii

www.manharaa.com

Abstract

The activity of developing software systems is not an end, but a means to
an end for the people who directly or indirectly depend on them. Taking such a
view thus implies that software systems must be engineered such that they help
people meet their ends. The primary focus of this study is to show how decisions
about software systems can be made such that they are better aligned to realize
the values (ends) of its stakeholders (people).

This study develops an interdisciplinary theory and process by integrating
research in organization design, economics, and software engineering. It goes
beyond both that in addressing why a software system is being produced, and
how well it needs to perform. It makes an inquiry into the current practices
related to decision making in thinking about and constructing or acquiring
software systems. With a few exceptions, it shows how most current practices fall
short in addressing the full set of stakeholder values (disconnected from
stakeholder values), and how current practices use an insufficient unit of analysis
that does not include the context in which the software has to transition

(disconnected from context).

viii

www.manharaa.com

Chapter 1: Introduction

What is the primary thesis of this research?

The activity of developing software systems is not an end, but a means to
an end for the people who directly or indirectly depend on them. Taking such a
view thus implies that software systems must be engineered such that they help
people meet their ends. The primary focus of this study is to show how decisions
about software systems can be made such that they are better aligned to realize
the values (ends) of its stakeholders (people).

Note that this is consistent with Webster’s definition of “engineering”:

(1) the activities or function of an engineer

(2a) the application of science and mathematics by which the properties

of matter and the sources of energy in nature are made useful to
people

(2b) the design and manufacture of complex products.

The main definition (2a) puts making things useful to people (i.e., satisfying
their value propositions) at the center of what an engineering discipline should do.
And the last definition is the one that applies to software engineering.

Research on software systems has been roughly split into two aspects —
process and product. Product research is mainly focused on the “what is

produced” — generally technology focused, and addresses problems mostly within

www.manharaa.com

the ambit of computer science. These may include inventing technologies to
improve a software system’s quality attributes, such as performance and security,
or identifying better approaches to implementing existing or new technologies.
For example, Web Services was invented in response to the growing
interoperability needs among software systems.

Process research instead addresses “how the product is being produced” —
in particular, the managerial and administrative aspects of developing software
systems. The focus is on the practices that guide the development of a software
system from its conceptualization through its evolution to a possibly much larger
system such as the kind that serves an enterprise. Examples of research within the
process area may include methods for decision making, life cycle choice, cost and
schedule estimation, design and analysis, and risk identification and management.

This study integrates product and process research. It goes beyond both in
addressing “why” the product is being produced, and “how well” it needs to
perform. It makes an inquiry into the current practices related to decision making
in thinking about and constructing or acquiring software systems. With a few
exceptions, it shows how most current practices fall short in addressing the full set
of stakeholder values (practices disconnected from stakeholder values), and how
current practices use an insufficient unit of analysis that does not include the
context in which the software has to transition (practices disconnected from

context). Some of these current practices are discussed next to set the context for

www.manaraa.com

the primary thesis of this research: that value-based and context-connected
approaches can produce more stakeholder-satisfactory outcomes. Others will be
described in Chapter 2 — Literature review.

In addressing these issues, this study describes a proof of concept theory
for developing software systems that uses stakeholder values as its unit of
analysis. A significant contribution of this study is the explanation of the
theoretical constructs used in creating a new theory, and a process framework
that helped in making an initial assessment of its sufficiency and fitness with
respect to a set of criteria.

Since this research deals with imprecise and situation-varying human
values, a combination of analytic and qualitative approaches was chosen for
assessment of its findings. Future work to strengthen this research should include
quantitative assessments and further extensions for each of the key theoretical

constructs.

Software Systems — State of Affairs

What is the motivation for this study?
The low rate of successful software systems (Standish Group, 2004); its outcomes
such as loss of life (Finkelstein and Dowell, 1996; Leveson and Turner, 1993); loss
of revenue (NIST, 2002; Flowers, 1996; Babcock, 1985; Carr 2002) corporate

embarrassment (LA Times, 1987; WS Journal, 1989) has been both a reflection of

www.manaraa.com

the field’s lack of understanding of how best to develop software systems and an

inspiration for this research to uncover better ways.

Table 1 (ranked from highest to lowest) is a compilation of the top-n risks from

Boehm (“Boehm’s Top 10 Risk List”, accessed March, 29, 2007) and Jones (1994)

that have been known to impact the success of a software system. These risks

Table 1. Top Software System Risks

Boehm (2002)

Schedules, budgets,
process

Boehm (2007)

Architecture complexity;
quality tradeoffs

Jones (1994)
MIS

Requirements Changes

Requirements volatility;
rapid change

Creeping user
requirements

Personnel Shortfalls

Acquisition, contracting
process mismatches

Excessive schedule
pressure

Requirements Mismatch

Customer-developer-user
team cohesion

Low quality

Rapid change

Budget and schedule
constraints

Cost overruns

Architecture, ilities

Requirements mismatch

Inadequate
configuration control

Commercial off-the-shelf,
external components

Personnel shortfalls

Commercial

Legacy Software

COTS and other
independently evolving
systems

Inadequate user
documentation

Externally-performed
tasks

Migration complexity

Low user satisfaction

User interface mismatch

User interface mismatch

Excessive time to
market

Harmful competitive
actions

Litigation expense

www.manharaa.com

inform us that today the risks related to deficiencies in process guidance are far
greater than in the underlying technology of a software system. Since this study is
in the realm of process research, it hopes that it can at least positively impact

some of these risks.

Overview of the Problem

What are the shortcomings of current practices?

There are many possible reasons and explanations for such a dismal state
of affairs in software systems development. This study offers two explanations of
some of these problems. First, current practices are largely disconnected from the
context (organization and its environment) — that is, their scope (unit of analysis)
is overly limited. Second, current practices are disconnected from stakeholder
values — that is, there is little process guidance on how best to address
stakeholder values in making tradeoffs when the desired properties (feature sets,
security, ease of use) of a system are either conflicting, competing or dependent

on each other for limited resources.

Context Disconnect

How does a disconnected context impact software systems?
Many software projects fail by succumbing to the “Field of Dreams” syndrome
(Boehm and Turner, 2007). This refers to the American movie in which a

Midwestern farmer hears a voice saying that if he builds a baseball field on his

www.manharaa.com

farm, the legendary players of the past will appear and play on it (“Build the field
and the players will come”). This syndrome — build the system and user will come -
- now runs deep in much of the techniques and methods that are used in the
process of developing software systems: they do not address the organizational
context.

Developing a software system based on a set of formal specification does
not guarantee that the system will generate the expected stakeholder values. The
explicit connection between the “software” and the organizational “context” must
be made. Thorp (1998) and his employer, the DMR Consulting Group, have
developed a Benefits Realization Approach (BRA) to show how software initiatives
must be connected with the organizational context to be successful in realizing the
expected benefits. This study extends their approach by requiring that the
success-critical stakeholders be explicitly identified in the context.

Figure 1 shows the organizational context of an order-processing system
that a company had set out to develop in response to the shortcomings of its
existing systems. The figure shows how a benefits chain connects a software
system to its context by linking software system Initiatives (e.g., implement a new
order entry system for sales) to Contributions (not delivered systems, but their
effects on existing operations) and Outcomes, which may lead either to further
contributions or to added value (e.g., increased sales). It also helps in uncovering

assumptions usually hidden in the organizational context on which the software

www.manaraa.com

system’s success depends. For example, if the market stagnates due to an
unforeseen event, the reduced time to deliver the product will not result in

increased sales.

Distributors

Distributors

Assumptions
- Increasing market size
- Continuing consumer satisfaction with product

- Satisfactory manufacturing planning & control system
- Relatively stable e-commerce infrastructure

- Continued high staff performance New order
New order fulfillment
fulfillment system processes,

outreach, training

Safety, fairness inputs Interoperability inputs

Less time, Faster, Increased
fewer better sales,

errors per order profitability,
order entry Increased customer

entry step [Lesstime, fewer system customer satisfaction
errors in order satisfaction,
processing decreased
operations costs,

Faster order entry On-time
steps, errors assembly

O Outcome
Newrz(r:(:(:;eesntry Improved supplier
outr?each trai’nin coordination
Initiatives ! 9

——» Contributions Suppliers
(D Stakeholders Distributors

Figure 1. Benefits Chain as a Software System's Context
Adapted from (Boehm and Jain, 2007)

By including the organization context, a software system’s project
members can work with their stakeholders to identify additional non-software
initiatives that may be needed to realize the stakeholder values that are
associated with the software system initiative. Context also helps in identifying
some additional success-critical stakeholders who need to be represented and

“bought into” the project team.

www.manharaa.com

For example, the initiative to implement a new order entry system may
reduce the time required to process orders only if an additional initiative to
convince the sales people that the new system will be good for their careers and
to train them in how to use the system effectively is pursued. If the order entry
system is so efficiency-optimized that it doesn’t keep track of sales credits, the
sales people will fight using it, so increased sales may also required adding a
feature to keep track of sales credits so sales people will want to use the new
system. Further, the reduced order processing cycle will reduce the time to deliver
products only if additional initiatives are pursued to coordinate the order entry
system with the order fulfillment system.

The benefits chain is one of many ways to connect a software system with
its context. Another approach using contingency theory from Burton and Obel

(2004) is described in the next section and in Chapter 3.

Stakeholder Value Disconnect

How are stakeholder values disconnected from practices?
Decisions about software systems are usually made in dimensions such as cost,
schedule, quality, features, good practice vs. bad practice, technically sound, or
methodology driven. Unfortunately, these by themselves have nothing to say
about stakeholder values. “You can’t control what you can’t measure” (DeMarco,

1986, quoting Lord Kelvin) and “You only get what you measure” (Austin, 1996)

www.manaraa.com

are the two of the most repeated slogans of measurement gurus. Still yet, current
practices have remained disconnected from stakeholder values.

For example, acceptance testing is usually the last step in a system’s
development life cycle. It is performed by a customer prior to accepting delivery
or accepting transfer of ownership. It involves a set of software-oriented tests
approved by the customer as qualification criteria for successful development.
Thus an acceptance test also serves as a contract between the developers and the
customer.

From a legal sense, this is certainly sound. However, in a software system,
such as an order processing system that was developed to reduce operational
costs, increase market share, increase customer satisfaction and employee
satisfaction, such a test would only imply that the software adheres to some of
the behaviors required by its customer. This is not a limitation of the acceptance
testing practice per se, rather it is in the practices that guide the process of
acceptance testing. A case in point to this is Miller and Collins (2001), who
suggest:

Your system is done when it is ready for release. It is ready for release

when the acceptance tests deemed “must-have” by the customer pass. No

other definition makes sense. ... What does an acceptance test look like? It
says, “Do this to the system and check the results. We expect certain
behavior and/or output.”

The problem with their approach is that it doesn’t provide any guidance on

how much testing is enough or how different approaches towards testing

www.manaraa.com

influence the stakeholder values. A common occurrence in the way software
practices are designed is that they are influenced by certain guiding principles that
have emerged as universal and timeless. Quality has been one such guiding
principle that has dominated the last two decades in engineering in forms such as
the capability maturity models (Paulk et al., 1994), and total quality management
(Croshy 1979; Deming 1986; Juran 1988). Such relentless quest for quality has
worked for many organizations, while others have struggled with it.

John Favaro in “When the pursuit of quality destroys value” (1996),
observes that “[The way] Quality metrics have been used per se make no explicit
strategic or economic statement.” He explains that if a bank encourages its loan
officers to minimize the percentage of bad loans, its officers will soon discover
that by lowering the overall number of loans they can lower the percentage of bad
loans. This, however, will bring less money for the bank. While pursuing quality is

generally good, it does not substitute for other value drivers.

A Case for Value-Based Engineering of Software Systems

Why are value-based approaches better?
The IEEE Standard defines “software engineering” as a “quantifiable approach to
the development, operation, and maintenance of software.” A value-based
approach to engineering however is not founded on the principles of quantifiable

vs. qualitative, right vs. wrong, but builds on Webster’s definitions of

10

www.manaraa.com

“engineering” — and therefore aligned towards “usefulness” (value) to its
stakeholders. If the purpose of developing a software system is to make it useful
for its stakeholders, then a value-based approach will yield better results than
traditional approaches.

Bullock in “Calculating the value of testing” (2000, p. 61) stated:

Business is what the military euphemistically calls a “target-rich environment.”
There are always far more opportunities for process improvement (or other
investments) than there are resources available. There’s never “enough”
money to “do it right” for anybody. Businesses are highly interactive systems,
in which each function influences the whole in many ways. Nothing is more
useless than a function that has been highly optimized in isolation.

His ideas echo the spirit of value-based approaches. Using a value-based
lens, developers of software systems address both — the conflicting, competing,
and dependent stakeholder values, and the larger system context.

Huang and Boehm’s (2006) study on software quality, market share
erosion, and risk show how a value-based approach to testing can yield better
results than using a traditional approach. For example, they showed (in Figure 2)
how value-based testing generated Pareto optimality based on empirical data

from Bullock (2000), as opposed to an automated test generation tool that treats

all test cases as equally valuable.

11

www.manaraa.com

100 4 .

= -
- = -
= = __.-"
3 807 Bullock data .-
E E 60 - (Pareto distribution) .-~
5% Pt ‘Automated test-generation tool
= E 40 PPN (all tests have equal value)
2 -
& E 20- ”',,
u ’T T T T | T T T T | T T T T |
3 10 15
Customer type

Figure 2. Value-Based vs. Value-Neutral
Source: Huang and Boehm (2006)

Figure 2 describes the testing context for a telecom organization’s billing
system, which has its services being used by sixteen different types of customers —
and with some customer types generating more revenue than the others. Bullock
showed how testing each customer type improved billing revenues from 75 to 90
percent and that one of the fifteen customer types generated 50 percent of all
billing revenues. If initial testing is focused on that one customer type, it will
provide a much quicker and better (in terms of future values) return on testing
investment.

In Figure 3 Huang and Boehm (2006) showed how different organizations
should reason about their investments on software quality. For example, an early
start-up will have a much higher risk impact due to market share erosion than a
commercial or a high finance organization. Therefore, from a risk point of view, it
is better for an early start-up to field a lower quality product than invest in quality

beyond the threshold of negative returns due to market share erosion.

12

www.manharaa.com

P{L) = S(L)

Figure 3. Effect of Software Reliability and Market Share Erosion on Risk
Source: Huang and Boehm (2006)

However, market share erosion is still one in many other factors in an
organization’s context that must be addressed in value-based testing. By invoking
contingency theory, Burton and Obel (2004) show us that an organization’s
context (see Figure 4) not only includes the market (environment) but also various
other elements inside and outside of an organization.

The arrows in Figure 4 indicate empirically demonstrated influences
between pair wise elements of an organization’s context. For example, if an
organization’s strategy is based on product leadership then it will have a high risk
impact not only from market share erosion but also lack of novelty (Treacy and
Wiersema, 1997; Burton and Obel, 2004). Therefore testing practices should also

address novelty to be compatible with the organization’s strategy. Many
13

www.manharaa.com

organizations already make use of “usability labs” to get consumer feedback on
the product’s ease of use, and for the consumers’ perception of the product in
comparison to other competitor products. Using such approaches, a testing

practice should also be able to establish a measure for novelty.

(GOALS, \
(4 _ MISSION)))

‘ BOUNDARY ’

4 Y))
A J

(STRATEGY) (ENVIRONMEN'D-»(SIZE) (TECHNOLOGY) MANSATGYEI:IEND CLIMATE

_ ORGANIZATIONAL
STRUCTURE

Figure 4. Organization Context
Adapted from Burton and Obel (2004)

Today most practices used in developing software systems have been
limited by their unit of analysis — that is, within the boundaries of a project. They
do not explicitly include the organizational context when reasoning about a
software system. For example, as explained before, a system’s level of quality
depends on an organizations’ strategy, environment etc. (Treacy and Wiersema,
1997; Burton and Obel, 2004; Huang and Boehm, 2006). And, level of quality
further depends on the level of testing, available resources, etc. However, most

software and systems engineering practices do not address such
14

www.manharaa.com

interdependencies when providing guidance on, say, software testing. Instead,
they only seek to optimize on cost and schedule.

Making decisions about the many competing, conflicting and dependent
attributes of a software system has been a complex problem to address. This is
because (1) stakeholder values can be boundedly rational and circumstantial, and
(2) there are many interdependencies among the software system, involved
organizations, and their environments that must be factored into decision making.
Fortunately, with application of appropriate methods and theories, these

complexities can be addressed.

Conceptual Framework

How does this study address a few of the current engineering shortfalls?
Many engineering research projects focus on tools, techniques, and
methods. But in this case that would be premature. As such, the primary research
guestion that this study addresses is:
Can a value-based theory for software engineering be developed that

provides:

a. criteria that distinguish projects that will fail from projects that will
succeed;

b. aprocess that applies the criteria to enable projects to succeed and
satisfactorily addresses the criteria for a good theory?

15

www.manharaa.com

The 4+1 Value-Based Theories

How is the theory organized?

A theory that can address the multi-dimensional nature of stakeholder
values needs to bring together interdisciplinary theoretical lenses into a state of
synchrony and allow reasoning about systems in different dimensions, at different
times, and at various levels of abstraction. It therefore needs to address all of the
considerations of technical systems engineering theories, plus considerations
involved in the managerial aspects of systems, plus the personal, cultural, and
economic values involved in developing and evolving successful systems. It also
has to have the ability to identify and work through the dependencies of socio-
political-technical systems and explain success and failure in such contexts by
situating the success-critical stakes at the forefront.

The socio-political-technical nature of systems may not fit well with most
of the formalized theories of mathematics and science. Such theories are able to
be both formal and predictive because they rest on ideal, universal and timeless
assumptions, such as the flow of electricity through a conductor, the flow of air
around an airfoil, or the flow of chemicals through a reactor being the same ten
years from now as they are now. However, such assumptions of universality and
timelessness cannot be made of systems involving people.

Although this sounds complex, using success-critical-stakeholder values to

situate and guide technical and managerial decisions actually made this job easier.

16

www.manaraa.com

The proposed theory presents a set of sufficient conditions for a system to be
successful, and a set of sufficient steps (in the next section) for realizing a
successful system. Its results depend largely on dealing with the value
propositions of the system’s success critical stakeholders, and with the
interdependencies that their value propositions create. This study lays the

foundations for such a theory.

Dependency
Theory

What values are important?
How do dependencies How is success assured?

How important are the
affect value realization?

values?

How to adapt to change
and control value
realization?

Control Theory

Figure 5. The 4+1 Theory — Key Constructs

How do values determine
decision choices?

Decision Theory

Figure 5 is a architectural illustration of the proposed “4+1” theory of
VBSE. The engine in the center is the success-critical stakeholder (SCS) win-win
Theory W that addresses the questions of “what values are important?” and “how
is success assured?” for a given software engineering enterprise. The four
additional theories that it draws upon are dependency theory (how do

stakeholder, product, and process dependencies affect value realization?), utility

17

www.manharaa.com

theory (what is the relative importance of each value?), decision theory (how do
stakeholders’ values determine decisions?), and control theory (how to adapt to

change and optimize value realization?).

The Process Framework

How do the theories work together?

4b, 6b. Option, solution
development & analysis

Dependency Theory

2. Identify SCSs 3. 5CS Value
Propositions

2a. Benefits Chains
3b, 4b, 6b. Cost/

4a. SCS

schedule)
performa/nce 3b, 6a. Solution expectations

tradeoff Analysis management [4b, 6b. .
e Prototyping

4. SCS Win-Win
Negotiation

5, 6¢. Refine, Execute,
Monitor & Control Plan

1. Protagonist goals

3a. Solution exploration

6. Risk, opportunity,
change management

Control Theory Decision Theory

Sa, s_c' t.itate meaSt.Jrement, 4b. Investment analysis, Risk
prediction, correction; analysis

Milestone synchronization
SCS: Success-Critical Stakeholde:

Figure 6. The Process Framework

Figure 6 illustrates the process view of the “4+1” theories. It serves as an
enactment guide for its users in six steps.

While it is not a complete step-by-step process for developing a software
system, it identifies how traditional engineering practices can be applied in an
overarching framework that is driven by stakeholder values. It shows in each step

how values can be integrated into the process of developing software systems. For
18

www.manharaa.com

example, Step 2a, Benefits Chain, connects the software system to its context by
uncovering initiatives and assumptions that potentially require attention before

significant resources are committed to developing the system.

Significance of Research

What are the primary contributions of this study?

The theory proposed in this study addresses the two identified
shortcomings of existing approaches in developing software systems: disconnect
between stakeholder values and the values applied during the engineering of a
systems product, and timelessness and universality in existing approaches. Many
related studies (Huang and Boehm, 2006; Bullock, 2000; Favaro 1996; Thorp 1998)
have noted the shortcomings of value-neutrality of existing engineering
approaches used in developing software systems. However, this is the “first”
theory that has identified the “sufficient and necessary” constructs for
practitioners to apply value-based concepts across “all” phases of software
systems development life cycle.

Six case studies were used post hoc to assess the strength of the theory
and its step-by-step enactment process. The results supported the “sufficient and
necessary” criteria for the theory by showing how certain (failure) outcomes could
have been avoided if the theory had been applied. The theory and process helped

explain success vs. failure by adding stakeholder value, and was particularly

19

www.manaraa.com

helpful when compared to other theories involving explanations of human
behavior. The application in six case studies represents a promising start. This
study hopes to strengthen the discipline by contributing a theory that:

e Relies on existing theories: Other methods offer heuristics and
biographically-based guidance. This study is based entirely on theory, and,
as Karl Lewin so eloquently stated, "There is nothing as practical as a good
theory."” Theory is thick, generating a rich palette of behavior from a few,
parsimonious rules.

e Usability - Other methods for making decisions do not direct the decision-
maker in a step-by-step manner. Most other methods try to instill overall,
high-level guidance, leaving the decision-maker on his/her own to
implement. The 4+1 theory with its enactment guide gives specific
instructions in what information to evaluate and how to share information
among the steps. And the steps can be implemented at any granularity.

e Empirical validation - Many other methods are dicta, there is no empirical
validation at all. The proposed theory rests on a combination of logical
analysis (e.g., the theorems and their proofs, which are not as precise as
those of mathematics , but are better fitted to human values and qualified
with respect to their universality); application and integration of well-

established theories; use of quantitative results from research to date in

20

www.manaraa.com

value-based software engineering; and case studies representing multiple

disciplines, sizes, and technology levels.

Limitations

What were the limitations of this research?
This study is limited on two fronts: its validation approach, and overall
scope, both as a result of its early stage of evolution. The following sections
discuss some of the implications of these limitations, followed by a justification for

using such an approach in light of its limitations.

Validation Approach

What were the implications on validity?
Six case studies were identified to apply the theory and test its validity.
Although they do not provide general validation, they show consistent results
from a variety of domains including public service, finance, office applications,
robotics applications, and supply chain management, and consistent results with
the complementary analytic results and quantitative results from other value-

based software engineering studies.

Representativeness

The selection of case studies was based on content richness, that is, the

high degree of detail presented, as opposed to the selection’s representativeness

21

www.manharaa.com

of different project types, technical domains or industries. However still, they
covered a variety of domains such as from a variety of domains including public
service, finance, office applications, robotics applications, and supply chain

management.

Rigor

Rigor in research is normally demonstrated in all of a number of ways. In
the case of this study, rigor was observed in resting the theory not on one but on a
combination of logical analysis; application and integration of well-established
theories; use of quantitative results from research to date in value-based software
engineering; and case studies representing multiple disciplines, sizes, and

technology levels.

Bias

It is difficult to gauge the extent of bias in the data collected by the authors
of the selected case studies, though it would be remarkably coincidental by any
measure to assume or assert that the case study authors could bias this research
study. On the other hand, there was no bias in the choice of which case studies to
select to support the research hypothesis advocated here, as richness of detail

and availability were the only criteria used in selecting case studies.

22

www.manharaa.com

Research Scope

What were the implications on scope?
The scope of this research is modest indeed, as theories pertaining to
sociotechnical systems cannot just rely on any one form of validation. However
still, this study makes a sincere attempt by combining results from a variety of
perspectives; using the strengths of complementary research modes in
demonstrating variety and consistency; and including results from existing

research conducted in the field.

23

www.manharaa.com

Chapter 2: Literature Review

This study proposes a new theory for developing software systems.
Therefore, a review of the relevant literature must include much of the past and
existing studies on the subject of software systems; the subject of organizations
since they provide the context for development; the subject of economics since
developing software systems are a means for economic pursuits; and the subject
of social sciences since software systems interact with people. Unfortunately, a
review of such breadth is not practical.

The growth of this (systems and software engineering) field alone in the
last five decades has been so rapid that it has caused a literature explosion. The
Institute of Electrical and Electronics Engineering (IEEE) today houses over 55,000
qualified (reviewed and accepted by a bona fide committee) publications with the
word “software” in a document’s title or abstract; and over 1,000 of which, use
the term “software process” in their abstracts. If the Association for Computing
Machinery, Wiley, Springer, and other publishers of the many books written on
software methodologies were to be included, these numbers will probably be in
the order of thousands. Additionally, the fields of organization design, economics,
and social sciences, each like software systems have an equally impressive body of

knowledge.

24

www.manaraa.com

This study has been done towards a doctoral dissertation. This significantly
limits the time and resources available. As such, this chapter examines relevant
literature in the following way. In the first part “Theories of Software Systems” it
identifies a subset of the literature that is (a) most prominently used in the field,
and (b) relevant to this research in helping distinguish this study from its
predecessors. In the second part “Candidate Theories for VBSE,” it reviews a very
small subset of literature from other fields (organization design, economics, and
social sciences) that this study used to construct a new theory, and to show a

proof of concept that can be further built upon.

Part I: Theories of Software Systems

Theories of software systems (how best to develop software systems) have
ranged from the code-and-fix model in the 1950s and 60s that literally had no
theoretical underpinnings to it, to the recent emergence of the agile
methodologies that have drawn concepts from chaos theory in the making of
more descriptive models for developing systems.

Review of literature related to software systems shows that there are
many different theories used in the process of developing software systems. For
example, some such theories are limited for cost estimation, some for doing
architecture and design, and others for the many other downstream activities that

are involved in the course of development.

25

www.manaraa.com

However, this review is limited to lifecycle models (theories) that provide
assistance in (a) guiding the core activities of development and (b) explicitly tries
to answer “how best to develop a software system”. The next few sections
examine the various lifecycle models that have proliferated in the field of software

systems.

The Code-and-Fix Model

Code-and-fix (commonly referred as the “hacking” approach) is perhaps
the most criticized model in developing software systems due to its lack of
discipline. This is because it starts with little or no initial planning. However, code-
and-fix has continued to remain a widely-seen choice for software developers,
especially when they are faced with a tight development schedule.

Boehm in “A spiral model for software development and enhancement”
(1988) states that code-and-fix was the "basic model used in the earliest days of
software development [and] contained two steps: (a) Write some code, (b) Fix the
problems in the code. Thus, the order of the steps was to do some coding first and
to think about the requirements, design, test, and maintenance later” (pp. 61-62).
Thereafter, the 2-step model (code and fix) iterates until either the project is

declared complete or cancelled.

26

www.manharaa.com

-~ = "R = o
: I |:> Code-and-Fix :
L L J - J
5 Release
Spegisf;itsaTion {maybe)
(maybe)

Figure 7. The Code-and-Fix Model
Source: McConnell (1996, p. 140)

There are two significant advantages of using the code-and-fix model. First,
it has no overhead in terms of time spent in planning, documentation, and
verification and validation. Second, it requires little expertise since it doesn’t have
any formal requirements for application — anyone who writes software (without
using any other formal theories) is using code-and-fix by default (McConnell,
1996).

However, this model has its share of difficulties too — first, since it doesn’t
require that the stakeholder values be identified and explicated, the resulting
software may poorly match the needs of its stakeholders, resulting in outright
rejection or rework; second, since it doesn’t engage in any upfront design, after a
number of fixes, the software usually becomes so unstructured that additional
fixes becomes very difficult; third, without any verification and validation

planning, the software becomes very expensive to fix in the later phases (Boehm,

27

www.manharaa.com

1988). In the timeline of theories of software systems, code-and-fix was perhaps
the first theory, though granting it theory status may be a stretch; it was certainly
an observed practice.

In comparison to this study, the code-and-fix model is both stakeholder

value disconnected and context disconnected in its approach.

The Waterfall Model

The waterfall model is a sequential software development model in which
development is seen as flowing steadily downwards (like a waterfall) through the
phases of requirements analysis, design, implementation, testing (validation),
integration, and maintenance (Wikipedia.com). The waterfall model is usually
known as the classic model for developing software systems. First documented by
Winston W. Royce in 1970, it is perhaps still the most widely used software
development process, in one form or another (Humphrey, 1989). The pure
waterfall lifecycle consists of several non-overlapping stages, as shown in the
Figure 3. The model begins by establishing system requirements and software
requirements and continues with architectural design, detailed design, coding,
testing, and maintenance. Each phase in the Waterfall model concludes with a
review to determine if the project is ready to proceed to the next phase or

continue iterating the current phase or going back to previous phases. The

28

www.manaraa.com

waterfall model today continues to serve as a baseline for many other lifecycle

models.
~ System
» Requirements
N =q
~ l
N . Sofware |
Requirements
~N
~
N

Analysis
\ g
~

N Program

N Design
~
N
~ Coding
N
N

Testing

~ Operations

Figure 8. The Waterfall Model
Adapted from (Royce, 1970)

McConnell (1996) argues that the waterfall model works best for projects
that have a stable product definition and well-understood technical
methodologies, and it works especially well if the project staff is inexperienced
since it provides the project with a structure that helps in minimizing rework.
Boehm (1988) further explains that the fundamental disadvantage of the waterfall
model is that it emphasizes on fully elaborated documents as completion criteria
for the requirements and design phases at the beginning of the project. Since in

most cases certain requirements and design issues are only uncovered after

29

www.manharaa.com

construction has begun, substantive modifications in subsequent phases may lead
to a poorer design. Finally the Waterfall model requires that a software system’s
requirements are pre-specified however, when commercial off-the-shelf (COTS)
products are employed, system requirements usually become emergent than pre-
specifiable.

To address some of the issues in the classic waterfall model, a number of
"modified waterfall" models have been proposed in the subsequent years — these
modifications have focused on allowing some of the stages to overlap, thus
reducing the documentation requirements and the cost of returning to earlier
stages to revise them. Another common modification has been to incorporate
prototyping into the requirements phases. While overlapping stages, such as the
requirements stage and the design stage make it possible to integrate feedback
from the design phase into the requirements, they also make it difficult to know
when each phase ends, when to proceed to the next phase. Consequently,
progress is more difficult characterize and to track. Without distinct stages,
problems can cause deferring important decisions until later in the process when
they are more expensive to correct.

Although the waterfall model in general has been criticized for its
disadvantages, Glass (2003) points out that it is still preferred in certain
management circles. The reason is that the waterfall model has the simplicity of

explanation and recall, and it gives the sense of control, an "orderly, predictable,

30

www.manaraa.com

accountable, and process, with simple document-driven milestones, such as
requirements complete” (Larman, 2004, p. 106).

In comparison to this study, the Waterfall model to some extent captures
the stakeholder values in form of a requirements document. However,
stakeholder values, as explained above, usually change, possibly causing costly
problems downstream in the lifecycle. Additionally, the Waterfall model does not
make an explicit connection between stakeholder values and development
activities, such as in architecting or testing. Finally, the Waterfall model is also

disconnected from its context.

The Spiral Model

Barry Boehm (1988), in addressing the shortcomings of the Waterfall
model, proposed the spiral model as a “risk-driven process model generator that
can be used to guide multi-stakeholder concurrent engineering of software-
intensive systems. It has two main distinguishing features. One is a cyclic approach
for incrementally growing a system's degree of definition and implementation
while decreasing its degree of risk. The other is a set of anchor point milestones
for ensuring stakeholder commitment to feasible and mutually satisfactory system
solutions.”

He showed that with the spiral model’s core emphasis on risk

management, major problems can be found much earlier in the development

31

www.manaraa.com

cycle. For example, in the waterfall model, software design must be completed
before construction. With the spiral model, a project is broken down into a set of
risks that guide the course of development. For each spiral (or iteration), it
requires that the most important risks are analyzed and addressed, only after
which the project can proceed to the next issue (that is, risk in order of
importance).

According to McConnell (1996) the basic idea of the spiral model is "you
start on a small scale in the middle of the spine, explore the risks, make a plan to
handle the risks, and commit to an approach for the next iteration," and "after the
major risks have all been addressed, the spiral model terminates as a waterfall
lifecycle model would” (p. 141).

He explains that the biggest advantage of the Spiral model is that as costs
increase, risks decrease, and if the risks are insurmountable, the model will give
the project an early indication, which will save time and money. However, the
model also has two disadvantages. First, it is complicated, requiring conscientious,
attentive, and knowledgeable management (McConnell, 1996); second, in many
cases the spiral model is not easily decomposable into the progressively finer

levels of details in real-world's software development projects (Humphrey, 1989).

32

www.manharaa.com

CUMULATIVE ‘
COSsT

”_.--'

DETERMINE
OBJECTIVES,

ALTERNATIVES,
CONSTRAINTS

COMMITMENT,

PROGRESS

——f THROUGH

STEPS

RISK ANALYSIS

RISK ANALYSIS

EVALUATE
ALTERNATIVES

IDENTIFY,
RESOLVE RISKS

F'AH.TITII:IH\. /- AN
REVIEW =L
ROTS PLAN
LIFE CYCLE
PLAN -
DETAILED
N
REQUIREMENTS pESIG
VALIDATION .
-~ CODE
lNTFf“RD‘LTEET DESIGN VALIDATION
PLAN AND VERIFICATION UNIT
PLAN NEXT ALY
PHASES INTEGRA- %
TION AND

Figure 9. The Spiral Model
Source: Boehm and Hansel (2005)

1

ACCEPT- % TEST

IMPLEMEN-} ANCE TEST
TATION

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

In comparison to this study, the Spiral model iteratively tries to capture

stakeholder values in forms of objectives, constraints and priorities, and risk

however, it makes no explicit connection with the organizational context. For

example, it does not require that organizational dependencies such as the

environment be identified. Finally, it has nothing to say about monitoring project

progress with respect to the stakeholder values.

33

www.manharaa.com

Rapid Prototyping Models

Humphrey (1989) defines rapid prototyping models as those types of
processes that aim to reduce the requirement uncertainties through
demonstrations of facets of system behavior. According to Weinberg (1991) rapid
prototyping enables system developers to create the most prominent parts of a
program as a prototype and then work with users to refine it until the prototype is
good enough. Once accepted, the prototype either becomes the basis for the final

product or is discarded.

"
Initial f Design and

Complete
- Refi otot
concept implement unliTZc;:;p?a!l;;: and release
initial prototype
prototype
| -,-.-,/' -

Figure 10. The Rapid Prototyping Model
Source: McConnell (1996, pp. 147)

As mentioned, one of the main problems with the Waterfall model is that
the requirements often are not completely understood in the early development
stages. Rapid prototype models instead serve as an effective tool for

demonstrating how a solution meets a set of requirements. One can build a

34

www.manharaa.com

prototype, adjust the requirements, and revise the prototype several times until
all the stakeholders have a clear picture of the overall solution. In addition to
clarifying the requirements, a prototype model also defines many areas of the
design simultaneously.

However, McConnell (1996) argues that its strength is also a source of its
biggest weakness. Since it may seem to many stakeholders that there exists a
working system, they may expect a complete system sooner than is possible. In
most cases, prototypes are built on compromises that allow it to come together
quickly but prevent the prototype from being an effective basis for future
development. Also, using a prototyping model can usually become a disguise for a
code-and-fix development cycle. Finally, it makes it literally impossible to make
any estimates about the cost or schedule of the project in developing the software
system.

In comparison to this study, the rapid prototyping model while tries to
capture some stakeholder values through iterative prototyping, it does so at the
cost of subordinating many other desirable attributes of a software system. For
example, an inherent problem in the rapid prototyping approach is that it does
not scale up to large applications, or non-user interface oriented applications.

Additionally, the Rapid Prototyping model is also disconnected from its context.

35

www.manaraa.com

Part II: Candidate Theories for VBSE

As stated in Chapter 1, the primary research question that this study
addresses is:

Is there a sufficient theory for the process of developing software systems

that can provide a unified framework for reasoning about how to

incorporate stakeholder values into the myriad “decisions” required to
deliver such systems?

A decision is a choice given a set of preferences (utilities), and partial
information on the causality (dependencies) between choices and outcomes.
Therefore, literature relating to “utilities”, “dependencies”, and frameworks for
analyzing “decisions” is discussed. Additionally, in Chapter 1, Figure 4, this study
showed how the organizational context has an impact of the way software
systems are developed. Since in most cases the organizational context is not
static, literature on “control” mechanisms is also reviewed. Finally, this section
also examines a subset of literature on “organization theories” to gain a better

understanding on how the development process of software systems is influenced

by the organizational context.

Organization Theories

Organizations have been studied in many disciplines such as economics,
social sciences, psychology and business. Each such discipline has offered many

different views and perspectives on how organizations should be studied. To help
36

www.manaraa.com

understand these various perspectives, some authors have offered frameworks
that distinguish among these perspectives based on their assumptions,
similarities, historical context, unit of analysis, and epistemological standing. This
study uses the Rational, Natural, and Open Systems classification as proposed by
Richard Scott in Organizations: Rational, Natural, and Open Systems (2003). An
alternative framework that is equally prominent is the Functionalist, Interpretive,
Radical Humanist and Radical Structuralist classification as discussed in Burrell and
Morgan (1972).

According to Scott, three distinct perspectives have been employed in the
study of organizations: organizations as rational systems, as natural systems, and
as open systems. However, as also acknowledged by Scott, in some cases these
distinctions will fade as overlaps (hybrids) occur. Nevertheless, his classification is
one based on commonality in ideologies across different theories. To this end, he
explains:

Proponents of organization as a rational systems view organizations as

“collectives oriented to the pursuit of relatively specific goals. They are

purposeful in the sense that the activities and interactions of participants

are coordinated to achieve specific goals. Goals are specific to the extent
that they are explicit, are clearly defined, and provide unambiguous
criteria for selecting among alternative activities.” And, organizations are

“collectivities that exhibit a relatively high degree of formalization. The

cooperation among participants is conscious and deliberate; the structure

of relations is made explicit and can be deliberately constructed and
reconstructed ... Formalization refers to the extent that the rules governing
behavior are precisely and explicitly formulated and to the extent that

roles and role relations are prescribed independently of the personal
attributes and relations of individuals occupying positions in the structure.”

37

www.manaraa.com

Proponents of organization as a natural system view organizations as
“collectivities whose participants are pursuing multiple interests, both
disparate and common, but who recognize the value of perpetuating the
organization as an important resource. The informal structure of relations
that develops among participants is more influential in guiding the
behavior of participants than is the formal structure”.

And, proponents of organization as open systems view organizations as

“congeries of interdependent flows and activities linking shifting coalitions

of participants embedded in wider material-resource and institutional

environments.”

Today, there are many different engineering methodologies that are
currently used in the development of software systems. Ideally, for process
research, it would be helpful to know what view of organization (or at least what
organizational characteristics) these engineering methodologies have assumed.
However, with a few exceptions, engineering literature usually does not make this
explicit. Earlier, distinction between two different approaches used to be based on
the characteristics of software systems however, recent literature has shown that
the effectiveness of various methods also vary based on organizational
characteristics (Borchers, 2003, Boehm and Turner, 2004).

In examining current engineering methodologies used for developing
software systems, such as the Waterfall (Royce, 1970), Spiral (Boehm, 1988) and V
(Sommerville, 1999) lifecycle models; improvement frameworks such as CMMi
(Ahern et al., 2003) and TQM (Crosby 1979; Deming 1986; Juran 1988); and

general systems theories such as (Forrester, 1961; Sterman, 2000; Wymore, 1967,

Alexander, 1979; Rechtin, 1991; Newnan, 2004; Marschak and Radner, 1972;

38

www.manaraa.com

Wiest and Levy, 1977); most seemed to fit well with the ideologies of closed
systems. However, as mentioned earlier, some of these may have some overlaps.

This study views organizations as open systems. In particular, in the next
chapter, this study uses a contingency approach as a form of dependency theory
to show how development of software systems depends on the organizations’
external environment.

The rest of this chapter will now review some organizational theories that
have taken an open systems view (contingency, institutional, and resource
dependency) as forms of dependency theory. Following which, utilities, decision

analysis, and control mechanisms will be discussed.

Dependency Theory

Dependency theory has its origin in the field of social sciences and refers to
a theory that was developed in the 1950s to explain interdependencies between
the developed and developing nations. It argued that the less economically
developed countries depend on more economically developed countries, and will
continue to do so as the formers’ surpluses will be siphoned off by more
economically developed countries. Studying interdependence between two
nations is not relevant to this study. However, the term “Dependency theory” is
still used since the primary objective of this theoretical lens is to understand

connections.

39

www.manaraa.com

As conceived and applied in this study, it refers to any set of principles that
offers to explain the nature of inter- and intra- dependence between the various
elements and aspects of developing software systems (processes, products,
people, internal and external environments) that affect value realization. For
example, the development approach of a software system will depend on an
organization’s strategy. If an organization’s strategy is oriented towards product
leadership, then innovation and time to market become the key drivers in the
development approach. On the other hand, a strategy oriented towards
operational excellence aligns best with a low-cost product, high-quality product
and process focus and innovation.

This section reviews three streams of research: contingency theory,
institutional theory, and resource dependency theory. Each of these has offered a
set of principles and an explanation for how various organizational elements and

entities interact.

Contingency Theory

Often termed as the “it depends theory,” contingency theory refers to a
stream of research that posits that not all organizations are the same, and thus, a
“blanket approach” (“one size fits all,” universal and timeless) is not appropriate
(Daft, 2003). Daft observes that effective organizations exhibit an appropriate fit

between external environmental conditions and their internal organizational

40

www.manaraa.com

structure. Therefore the correct administrative approach is contingent on the
organization's external environment.

Richard Scott (2003) explains that contingency theory challenges the
assumptions of those administrative theorists who have sought to develop a set of
normative principles for all organizations, in all times and places.

More tersely stated by Jay Galbraith in Designing Complex Organizations
(1973) and Richard Scott in Organizations: Rational, Natural, and Open Systems
(2003) contingency theorists believes that:

a) there is no one best way to organize; however,

b) any way of organizing is not equally effective.

c) the best way to organize depends on the nature of environment to which
the organization relates.

Contingency theory has its roots in the 1960s and onwards (Burns and
Stalker, 1961; Chandler, 1962) when increasing numbers of organizational scholars
began to see the impact of factors such as strategy and environment on an
organization’s structure. This period observed an increasing trend towards
defining the term "environment™ and “strategy,” prioritizing key factors, and
developing techniques to achieve congruence between organizational
characteristics and structure.

In the history of organization design, contingency theory found a distinct

space for itself through the promising publications by Joan Woodward (1970), Jay

41

www.manaraa.com

Lorsch and Paul Lawrence (1972), Richard Daft (2003), Jay Galbraith (1973), Jeffery
Pfeffer and Gerald Salancik (1978), and Charles Perrow (1973).

While in the literature of contingency theory there has been an increased
emphasis to show the interdependence between an organization’s environment
and its structure, today contingency theory refers to any number of management
theories that subscribe to the “it depends” ideology. Some contingency theorists
subscribe to the idea of technology determinism; others have focused on
environment uncertainty, strategy, leadership style, and climate as other sources
of primary contingencies (Burton and Obel, 2004). For example, Chandler in his
study of four companies (du Pont, General Motors, Standard Oil, and Sears
Roebuck) found that an organization’s structure should depend on an
organization’s strategy. To this end, he succinctly stated that “Unless structure
follows strategy, inefficiency results” (Chandler, 1962 pp. 314-315).

Joan Woodward in her study of 100 organizations in South Essex, Britain,
found that the type of tasks that an organization undertakes (manufacturing
process and technologies) has a dramatic impact on its structure. According to
her, choice of manufacturing process and technologies used by an organization
could severely limit the organizational choice of management (Woodward, 1970).
Therefore, she argued that bureaucracy would appear to be the best form of

structure if organizations are involved in routine operations. However,

42

www.manaraa.com

decentralization and an emphasis on interpersonal processes will work better in
environments of non-routine work.

James Thompson in Organizations in Action (1967) observed that
organizations operate at three distinct levels: institutional, managerial, and
technical. At the highest level (institutional), an organization operates like an open
system, interdependent with its external environment. At the lowest level
(technical), it operates like a closed system, protected from the organization’s
external environment. And at the middle, the managerial level mediates the two
by providing a buffer between the two end points. Thus, each level is directly
interdependent on its upper level, indirectly interdependent on all levels.

Coining the term “contingency theory” is attributed to Jay Lorsch and Paul
Lawrence (1972). They argued that different environments in the uncertainty-
certainty continuum place different requirements on organizations. An
environment characterized by uncertainty and rapid change presents a different
set of opportunities and constraints for an organization and its subunits than a
placid and stable environment. In their study of chemical industries (plastics, food
processing, and standardized containers) they also showed that different subunits
within an organization are exposed to different environments, and thus pose
different challenges for the various subunits. For example, they showed that
research and development units in a plastics manufacturing firm will usually be

exposed to higher levels of uncertainty and rapid change than production.

43

www.manaraa.com

However, this may not be the case for other types of industries. The primary
hypothesis of their study was that the more varied the types of environment
confronted by an organization, the more differentiated its internal structure needs
to be. And, the differentiation and mode of integration characterizing the larger
organization should be aligned to the overall complexity in the environment in
which the organization must operate (Scott, 2003).

Jay Galbraith’s framework of contingency theory (1973) is founded on the
principles of information management and processing. In Organization Design
(1977) he states that “the greater the task uncertainty, the greater the amount of
information that must be processed among decision makers during task execution
in order to achieve a given level of performance”. Therefore the primary challenge
for organizations is to organize themselves around their needs of information
processing. According to him, there are five key design levers that an organization
can use to align itself with its information processing needs. These include
environmental management, creation of slack resources; creation of self-
contained tasks for reducing information processing needs; and creation of lateral
relations and vertical information systems for increasing the organization’s
information processing capacity.

Burns and Stalker (1961) in their study of twenty different organizations
found that organizations when exposed to new and unfamiliar environmental

demands (such as novel market situations), best align with an organic

44

www.manaraa.com

management style and structures. However, a mechanistic system is suitable
when environmental conditions are stable. Therefore, they, like other contingency
theorists, concluded that there is no universal set of principles for neither
successful organizations nor an ideal type of management style. The critical
management task is to interpret the market and technological situation in terms
of its stability or instability, in order to design the appropriate organizational
structure for successful implementation.

To conclude, Lex Donaldson in The Contingency Theory of Organizations
(2001) discusses three limitations of contingency theory. The first problem relates
to the seemingly static nature of contingency theory because it appears to discuss
change only as a movement from misfit into equilibrium. However, organizations
can frequently move in and out of an equilibrium situation. Organizations can
experience repeated increases of change in contingencies and organizational
structure resulting in a more dynamic theory. The second problem is the difficulty
managers have in knowing exactly what organizational structures fit their
contingencies. Donaldson proposes that a full fit with their environments is
unrealistic for most organizations and suggests the term "quasi-fit" in referring to
the partial fit of an organization with its environment. The third problem relates to
the idea of the fit line being one of iso-performance, the position that produces

equal organizational performance. However, this raises the question of what is the

45

www.manaraa.com

benefit in becoming a more fit organization if the additional costs are greater than

the rewards involved.

Resource Dependency Theory

How external environments impact organizations and their response to
these external constrictions was the focus of Jeffrey Pfeffer and Gerald Salancik's
book, The External Control of Organizations (1978). Pfeffer and Salancik intended
their book to be a guide for designing and managing organizations that are
externally constrained. It declares that concepts such as organizations and
environments have not been readily accepted in the realm of organizational
management. However, the basis of their book is that the environmental context
of the organization must be comprehended in order to understand the behavior of
a company. Organizations are inescapably linked with the circumstances of their
environment. The authors’ position clearly echoes the tenets of contingency
theory. They believe that organizations survive to the extent that they are
effective in their adaptation to acquire and maintain resources in environmental
change.

What happens in an organization is a consequence of the environment
(Pfeffer & Salancik, 1978). There are three environment levels that Pfeffer and
Salancik describe in their book. The first level is the entire system of
interconnected individuals and organizations. The second level is the combination

of people and organizations with whom the organization directly interacts. The
46

www.manaraa.com

third level is the organization's perceptions and representation of the
environment. The authors draw on the work of F. Emery and E. Trist who describe
environments to consist of four types (Pfeffer and Salancik, 1978). The first type
refers to a situation in which the resources desired by organizations are randomly
distributed throughout the environment called a placid-randomized environment.
The interconnection between the different elements in the environment is not
strong. Organizations can survive as individual and small units.

The placid-clustered is the second environment type in which the pattern
of resources is sequentially predictable. It is profitable for organizations to
understand the wider environment and its opportunities. A need to formulate
plans that will permit an organization to achieve specific objectives is critical.
Planning and the development of specific competencies are encouraged in this
type of environment and lead to larger, more hierarchical organizations.

The third environment type refers to as a disturbed-reactive environment.
In this environment organizations must seriously consider competitive strategies,
concentrate on its resources, and organize their efforts in terms of a distinctive
plan where they can outwit their competitors. The final type is similar to the third
except a much higher level of interconnection occurs among environmental
actors. This environment is referred to as the turbulent field and is characterized

by an increasing unpredictability of a competitor’s actions. This unique

47

www.manaraa.com

environment has rarely been seen in world history and requires original forms of

strategic action.

Institutional Theory

Developed in the 1970s, institutional theory emerged from the
methodological and epistemological struggle among the various schools of
thought in organization design. According to Scott (2003), institutional theory
challenged ideas that economics could be reduced to a set of universal laws and
assumptions. Additionally, institutional theory believes that individual and
organizational actions are affected by institutions and habitual relations to others
(Scott 1995). Although continuing to challenge mainstream economics by
examining transaction costs and market failures (DiMaggio and Powell 1991; Scott
1995), institutional theory focuses on issues of legitimacy and constraint caused
by structures and reduced agency (Perrow, 1979; DiMaggio and Powell, 1991).

Institutional theory argues that organizational activity and action cannot
be explained purely by considering the rational activity of managers (Goodrick and
Salancik 1996). The general theme of institutional theory is that organizations
operate in highly normative contexts, and organizational survival and behavior is
driven more by the need to conform to norms of acceptable behavior and
legitimacy than by rationality or efficiency arguments (Meyer and Rowan 1977,
DiMaggio and Powell 1983; Scott 1987). Primarily concerned with regulative,

cognitive, and normative perspectives that provide meaning and stability to social
48

www.manaraa.com

life (Scott 1994), institutional theory considers that organizations are mainly
concerned with survival and reducing uncertainty (DiMaggio 1988; Scott 1995).
Regulative elements of institutional theory explain conformity through sanctions;
cognitive elements explain beliefs and taken-for-granted assumptions such as
bounded rationality; and normative elements explain traditional and social
obligations.

Like contingency theory, institutional theory has many variations across
the different works of its proponents. However, this study is limited to new
institutional theory as described in (Meyer and Rowan, 1977; DiMaggio and
Powell, 1991). In sum, the key ideas explained by new institutional theory are
organizational homogeneity, the stability of institutionalized components,
legitimacy and the embeddedness of organizational fields, and cognitive processes
where normative obligations are imposed upon actors (DiMaggio and Powell
1983; Scott 1995). In a word, organizations are seen via this lens to imitate each
other, which is why we do not see in the field all alternatives possible, why there

are, for example, only a few different life cycles choices explained and used.

49

www.manharaa.com

Utility, Decision, and Dependencies

As stated earlier, decisions are choices given a set of preferences (utilities),
and partial information on the causality (dependencies) between choices and
outcomes.

If there are no choices, there is nothing to decide. Therefore, the first
prerequisite of decision analysis is that there is more than one alternative
available to a decision maker. The second prerequisite requires that the
preferences of people involved can be identified. If there are no preferences, then
the decision-maker will be indifferent among the outcomes — as such, there will

no way to differentiate the preferability among alternative outcomes.

Utilities

Utilities are stated as preferences and indifferences. For example, we might all
agree that we prefer more money to less. And that we have a higher preference
for the first dollar than to the second, the second to the third, etc. (diminishing

marginal returns). University professors prefer that term papers are turned in by

the end of the term, and after that are (comparatively) indifferent about when

they are turned in.

50

www.manharaa.com

Critical region

Market share loss VL(Ty)
Mission value loss VL(Ty)
User value loss VL{Ty)

S

System delivery time Ty

Tavent
System delivery ime Ty

System delivery time Ty

—_—
2,
=
=

Figure 11. Stakeholder Utility Functions
Source: Huang and Boehm (2006)

Utility is usually presented graphically with thing being valued (time to
market, profit, and usability) along the abscissa and the corresponding preference
along the ordinate. Huang and Boehm (2006) show the following examples of

utility relationships:

Maslow’s Hierarchy of Needs as a Utility Theory

Abraham Maslow in Theory of Human Motivation (1943) identified five
fundamental human needs and their hierarchical relationship. A key aspect of his
study was in establishing the hierarchical nature of human needs. His model in
Figure 12 shows that the lower the needs in the hierarchy, the more fundamental
they are and the more a person will tend to abandon the higher needs in order to

pay attention to sufficiently meeting the lower needs.

51

www.manharaa.com

Esteem
needs

Social needs

Safety/ security needs

Physiological needs

Figure 12. Maslow's Hierarchy of Needs

Maslow’s model was not proposed as an economic theory of utility, but he
did try to explain how people make decisions by identifying what they need so his

model can be considered as a description of utility.

Decision Theories

Defined as the “act of making choices” (Keeney, 1988) or a “commitment
to action” (Mintzberg et al., 1976), utility and decision theories have been
primarily conceptualized as rational theories of choice, use the subjective
expected utility (SEU) model (March and Heath, 1994), and operate within the
assumptions of bounded rationality (Simon, 1957). The rest of the section
examines decision (and perforce utility) theories using two different frameworks,
as conceptualized by (Mintzberg et al., 1976) and (Bell et al., 1988), and then later

examines other forms of decision and utility theories.

52

www.manharaa.com

The Bargaining, Judgment, and Analysis Framework

The first framework for characterizing decision analysis is to consider it as a
process of bargaining, judgment, and analysis (Mintzberg et al., 1976). The
bargaining process involves making the many trade-offs among multiple decision
options with conflicting goals (negotiating in a politically motivated situation). The
judgment process is an individual approach where decision makers select an
option using a process that they may not consciously recognize. And analysis is a
discovery process where alternatives are objectively evaluated with respect to a
set of goals.

Of these three arms of the framework, analysis has been the most
emphasized in normative literature (Mintzberg, 2004) and is most frequently
manifested by subjective expected utility. First proposed by von Neumann and
Morgensten (1944), SEU is a formal utilitarian model, where decision makers
choose by assigning probabilities to possible states of nature and utilities to
outcomes, calculate expected utility (probability of the state of nature times the
utility of the outcome given that state), and then select the choice option with the
highest expected utility. Today, SEU in the form of multiple-attribute decision
making has a widespread adoption across many fields, despite questions about its

assumptions, usefulness, and applicability (Arrow, 1988; Bell et al., 1988).

53

www.manaraa.com

The Descriptive, Normative, Prescriptive Framework

The second framework for understanding decision analysis is to identify
the extent to which it is descriptive, normative, or prescriptive (Bell et al., 1988).
Descriptive decision research focuses on decisions people make and how people
actually decide. Normative research emphasizes logically consistent decision
procedures and how people should decide. Prescriptive research deals with how
to help people make good decisions and how to train people make better ones.

This framework does not make a distinction among the desirability of each

approach. Each is ideal for a specific (research or business) goal.

Rationality

Rationality, which is “accorded the methodological privileges of a self-
evident truth” (Tversky and Kahneman, 1988), today remains a central aspect of
decision analysis. As Harsanyi (1966, p. 139) notes:

From the point of view of a social scientist trying to explain and predict

human behavior, the concept of rationality is important mainly because, if

a person acts rationally, his behavior can be fully explained in terms of the

goals he is trying to achieve.

The term rationality, however, is often imprecisely defined. Beyond the
accepted and widely held belief that there are limits on human cognitive capability
(Simon, 1957), rationality is frequently used in at least two different ways. Action

can be considered “rational or substantively rational” if it results in outcomes that

are deemed good, and “procedurally rational” if made by a procedure that

54

www.manaraa.com

assesses expected consequences and chooses actions that are expected on
average to lead to desired outcomes. Under these conditions, processes may be
judged rational even if the outcomes are not consistent with expected results —
rationality procedures may lead to good outcomes or poor outcomes. In addition,
rationality of the decision cannot be determined ex ante; it exists strictly as an ex
post concept, and many decisions that are judged intelligent may be subsequently
assessed as unintelligent when their outcomes and effects on values are weighted

(March and Heath, 1994).

Intuition, Symbols, Ceremony and Rituals

Beyond the normative dominance of rationality in decision analysis there
are also other descriptive aspects of decision analysis such as intuition, symbols,
ceremony, and rituals. Although frequently neglected (March and Heath, 1994)
these are important elements of decision analysis because they provide meanings
for actions.

Intuition has been referred to as the tapping of an unstructured and
indirectly accessible lifetime accumulation of experiences (Simon, 1957). Symbols,
rituals, and myths are to varying degrees independent and frequently intertwined
(Pettigrew, 1979), but they can still be differentiated in definition. A symbol is an
object, practice, or sign that evokes something else by association, and links an
organization’s experience to deep feelings or to abstract definitions of human

dilemmas. A myth is usually a fictional story that appeals to the consciousness of
55

www.manaraa.com

people by embodying its cultural ideas or by giving expressions to deep,
commonly felt emotions; it establishes what is legitimate and unacceptable in an
organizational culture (Pettigrew, 1979). A ritual is a set of ceremonial forms or
the symbolic use of bodily movement and gesture in social situations to express
and articulate meaning, or by a mechanism by which the traditions are preserved

and meanings sustained (March and Heath 1994).

The Garbage Can Model

The garbage can model (Cohen et al., 1972) is a descriptive approach to
decision analysis that attempts to explain organizational decision making
anomalies (not being normative). In particular, it explains decision making by
"organized anarchies" where preferences are not clear, technology is not clear,
and/or participation is fluid.

The primary thesis of the garbage can model is that an organization "is a
collection of choices looking for problems, issues and feelings looking for decision
situations in which they might be aired, solutions looking for issues to which they
might be the answer, and decision makers looking for work™” (Cohen et al., 1972).
They explain that problems, solutions, and decision makers move from one choice
to another depending on the mix of recognized problems, choices, and available
choices for problems. Organizational problems are addressed based on a choice of
a solution, but choices are made by engineering combinations of problems,

solutions, and decision makers. Poorly understood and addressed problems drift
56

www.manaraa.com

into and out of the garbage can process, depending on the situation and factors.
Therefore, decision making in organizations are not always rational in that they do
not follow a rational process.

The spirit of decision theory is that a good decision (choice) will result in a
good outcome. In the context of this study, a good decision is an informed
decision — one that explicates the causality between the different choices
available and their likely outcomes, and identifies the best choice that will lead to
a good outcome. A good outcome is one that realizes the desired values of a
software system'’s stakeholders, such as profitability or system performance. Good
decisions may not always lead to good outcomes however, without true
clairvoyance available to a decision maker there is no better alternative in the

pursuit of good outcomes than to make good decisions.

Control Theory

The central tenet of control theory is that dynamic systems are deployed in
a changing environment that may cause the system to be instable. Therefore,
applying control mechanisms to a system during operations can enhance the value
of such dynamic systems.

According to Blanchard and Fabrycky (1998), an explicit concern for control
was witnessed in the 1950s when system engineers turned their attention to

large-scale, human-made systems, in which, there were many states, control

S7

www.manaraa.com

variables, and constraints. They explain that while classical control theory as in
mechanical systems cannot be used directly to select measures of effectiveness
and to optimize outputs, nevertheless, concepts can still be used to provide a
basis for structuring systems and internal relationships (dependencies) so that
feedback and adaptive phenomenon are incorporated in (software) system design
(and in management as used in this study).

The key aspect of control theory relevant to this study is the system
controller and its two mechanisms feedback and feedforward. They are discussed

next.

Feedback Control

A feedback control mechanism refers to a control system in which the
output of a system is monitored through a sensor (continuously or at some
intervals) and then processed through a control device that compares actual vs.
planned performance. If the actual performance does not match planned
performance, corrections are made through the actuator, and then the input is

“fed back” into the system.

Y

Input p System Output

Control
Actuator |- . -t Sensor
Device

Figure 13. A Feedback Control System
58

www.manharaa.com

Feedforward Control

Feedforward control, in contrast to a feedback control does not have an
interrupt in the system for corrections and decision making if actual performance
does not match planned performance. However, correction can still be made as
long as the algorithms that will do the decision making are prespecifiable, and any
external changes sensed by the sensors are measurable.

Implementing either of the two control mechanisms makes some
assumptions of the nature and state of the environment. As summarized in
(Brogan, 1974) these include observability (the ability to observe the current
enterprise state), predictability (the ability to predict whether the enterprise is
heading toward an unacceptable state), controllability (the ability to redirect the
enterprise toward an acceptable near-term state and a successful end state), and
stability (the avoidance of positive feedback cycles that cause control systems to

overcompensate and become unstable).

59

www.manharaa.com

Chapter 3: To Theory

Karl Lewin said, "There is nothing as practical as a good theory." Theory is
thick and it generates a rich palette of behavior from a few, parsimonious rules.
With this aspiration, this chapter presents the theory of value-based software
engineering, with an emphasis on the key theoretical constructs, and on the

interactions between these constructs.

Definitions and Context

This section traces the context for using existing definitions or constructing
new ones that will be used through the rest of the chapter, and elsewhere in the

study.

Success

Mahoney in “Finding a History for Software Engineering” (2004) says:

Dating from the first international conference on the topic in October
1968, software engineering just turned thirty-five [now thirty seven]. It has
all the hallmarks of an established discipline: societies (or sub-societies),
journals, textbooks and curricula, even research institutes. It would seem
ready to have a history. Yet, a closer look at the field raises the question of
just what the subject of the history would be ... What is a history of
software engineering about? Is it about the engineering of software? If so,
by what criteria or model of engineering? Is it engineering as applied
science? If so, what science is being applied and what is its history? Is it
about engineering as project management? Is it engineering by analogy to
one of the established fields of engineering? If so, which fields, and what
are the terms of the analogy? Of what history would the history of
software engineering be a part, that is, in what larger historical context

60

www.manaraa.com

does it most appropriately fit? Is it part of the history of engineering? The

history of business and management? The history of the professions and of

professionalization? The history of the disciplines and their formation? If
several or all of these are appropriate, then what aspects of the history of
software engineering fit where?

Much of Mahoney’s epistemological questions still remain unanswered.
One explanation for this is that if history speaks of successes and failures, then the
field is yet to be blessed with a universally acceptable definition for both success
and failure. With every new theory, there is an intrinsic view of success and failure
on which the theory is based. For example, for researchers inspired by science,
success is achieved only through following a set of laws and rules. They have
sought mathematical formalism and completeness in their theories, and revered
predictability (Jones, 1980). Similarly, for researchers inspired by behavioral
sciences, success is dependent on the alignment of human and skill factors (Juristo
etal., 2004).

This study is not an exception. It has also conceived a view of success, and
it is imperative that it is explicated to allow making any distinction between this
study and its predecessors. As stated earlier in Chapter 1, p. 1, this study considers
the activity of developing software systems as a means to an end for the people
who directly or indirectly depend on it. Having taken such a view thus implies that
success of a software system is to the extent that it delivers the expected benefits

to its stakeholders. Therefore, using this definition, a view of “maximized” success

(as in the theorems of Theory W) is that all success-critical stakeholders become

61

www.manaraa.com

winners. Since, success in most practical situations cannot be measured in
“absolute” terms; this study uses the concepts of “satisficing” and “success-

criticality” as discussed in the Choice Rational section.

Theory

As stated in Chapter 1, the socio-political-technical nature of systems
doesn’t fit well with most of the highly formalized theories of mathematics and
science. These are able to be both formal and predictive because they rest on
strong universal and timeless assumptions, such as the flow of electricity through
a conductor, the flow of air around an airfoil, or the flow of chemicals through a
reactor being the same ten years from now as they are now. However, such
assumptions cannot be made about universality and timelessness of systems
involving people and continually changing software.

There are numerous definitions of “theory” to consider. They range from
highly formal definitions such as, “A theory is a system of general laws that are
spatially and temporally unrestricted and nonaccidental” (Hempel and
Oppenheim, 1960; Danto and Morgenbesser, 1960), to relatively informal
definitions such as “A theory is any coherent description or explanation of
observed or experienced phenomena” (Gioia and Pitre, 1990). To capture the
strengths of both formal and informal approaches, this study uses Torraco’s

(1997) definition of “theory”.

62

www.manaraa.com

“A theory is a system for explaining a set of phenomena that specifies the

key concepts that are operative in the phenomena and the laws that relate

the concepts to each other.” (Torraco, 1997)

Similarly, this study’s theorems about success criteria for software-
intensive enterprises will not be “spatially and temporally unrestricted and
nonaccidental”. Systems and their success are subject to multiple concurrent
influences, some of which are unpredictable. For example, a project that is poorly
requirements-engineered and architected, poorly managed, behind schedule, and
over budget can still turn into a great success with the appearance of just the right
new COTS product to satisfy stakeholder needs. The reverse is true as well: “The

best laid plans 0’ mice an’ men Gang aft agley” through unforeseeable external

circumstances (Burns, 1785).

Choice Rationale

To restate, this study addresses:

Is there a sufficient theory for the process of developing software systems

that can provide a unified framework for reasoning about how to

incorporate stakeholder values into the myriad decisions required to

deliver such systems?

In chapter 1, a case was made about why stakeholder values must be
incorporated in the various decisions that are made in the development of

software systems. In chapter 2, many different theories most relevant to this

study’s research question were reviewed with respect to decisions, dependencies,
63

www.manaraa.com

control, and organizations. In particular, review of utilities and decision theories
showed how preferences (utilities) can be incorporated into decision analysis. The
focus of this section is to identify the key theoretical constructs required in such a

theory, and provide a choice rationale for the resulting set.

Historical Context

To this end, it will be helpful to shed a light on the historical context of this
study. The concept of value-based engineering of software systems was first
conceptualized and introduced to me by my advisor Barry Boehm. While to both
of us it seemed certain that value-based approaches were significantly superior
over most traditional approaches for developing software systems, it was not
clear what the theoretical underpinnings of such an approach were.

In an earlier study by Boehm and Ross in “Theory W Software Project
Management Principles and Examples” (1989), they had proposed that the success
of a software system depends on the various success-critical stakeholders of a
software system, and making them winners was necessary for success. They
further explained that software engineering was not a zero-sum game, and in
most cases cooperation will achieve better results than competition.

Since the foundation of this study is to align decisions about software
systems such that they deliver to the values expected by its stakeholders, Theory

W’s primary proposition (make winners out of success-critical stakeholders)

64

www.manaraa.com

became the “maximized” goal for my theory. As such, Theory W was not only
included as a key theoretical construct but its theorems also served as a guiding

philosophy that helped in identifying the other constructs.

Theory W

Two theorems form the core of Theory W, the “Fundamental System
Success Theorem” and the “System Success Realization Theorem.” The first
theorem “Fundamental System Success Theorem” states that:

“A system will succeed if and only if it makes winners of its success-critical
stakeholders.”

As mentioned in Chapter 1, and earlier in this section, value-based
theorems and proofs are less formal than those in such areas as mathematics and
physics. As such, an informal proof follows.

Proof of “if”:
(a) Everyone significant is a winner.
(b) Nobody significant is left to complain.
Proof of “only if”:
(@) Nobody wants to lose.
(b) Prospective losers will refuse to participate, or will counterattack.
(c) The usual result is lose-lose.
The proof of “if” is reasonably clear. The proof of “only if” may not be so

clear, so it is further illustrated in three frequently-occurring examples of the

65

www.manharaa.com

primary stakeholders in an enterprise involving a customer contracting with a
developer for a software system that will benefit a community of users, as shown

in Table 2.

Table 2. Win-lose Generally Becomes Lose-Lose

Proposed Solution “Winner” Loser
Quick, Cheap, Sloppy Product Developer & Customer User

Lots of “bells and whistles” Developer & User Customer
Driving too hard a bargain Customer & User Developer

In Case 1, the customer and developer attempt to win at the expense of
the user by skimping on effort and quality. When presented with the product, the
user refuses to use it, leaving everyone a loser with respect to their expectations.

In Case 2, the developer and user attempt to win at the expense of the
customer (usually on a cost-plus contract) by adding numerous low-value “bells
and whistles” to the product. When the customer’s budget is exhausted without a
resulting value-adding product, again everyone is a loser with respect to their
expectations.

In Case 3, the user and customer compile an ambitious set of features to
be developed and pressure competing developers to bid low or lose the
competition. Once on contract, the surviving bidder will usually counterattack by
colluding with the user or customer to convert the project into Case 2 (adding user

bells and whistles with funded Engineering Change Proposals) or Case 1 (often by

66

www.manaraa.com

exploiting ambiguities in the contract Statement of Work to deliver a contractually
compliant but unusable system that must either be thrown away or expensively
fixed) Again, everyone is a loser with respect to their expectations.

The Fundamental System Success leads to the System Success Realization
Theorem that identifies the predicates of making winners of a system’s success-
critical stakeholders. The “System Success Realization Theorem” states that:

Making winners of your success-critical stakeholders (SCSs) requires:

(a) ldentifying all of the SCSs.

(b) Understanding how the SCSs want to win.

(c) Having the SCSs negotiate a win-win set of product and process plans.

(d) Controlling progress toward SCS win-win realization, including

adaptation to change.

Theory W as a Choice Rationale

The first predicate is self explanatory — “Identifying all of the SCSs” involves
the use dependency theory. Chapter 1 showed how Benefits chain analysis, a form
of dependency theory can help in associating various stakeholders across different
initiatives.

The second predicate “Understanding how the SCSs want to win” requires
both dependency theory to identify the dependencies underlying their value

propositions (win conditions), and utility theory to identify their value

67

www.manharaa.com

propositions (win conditions). Chapter 2, in Figure 11, showed how stakeholder
values could be converted into utility functions.

The third predicate, “Having the SCSs negotiate a win-win set of product
and process plans” requires a combination of utility theory (Chapter 2, in Figure
11) in situations when their value propositions need to be adjusted, dependency
theory for understanding the interdependencies (tradeoffs) involved in
negotiations (as in Chapter 1, Figure 1 and Figure 4), and decision theory (as
explained in Chapter 2) for evaluating the different options against the various
value propositions.

The fourth predicate “Controlling progress toward SCS win-win realization,
including adaptation to change” involves the use of control theory. As explained in
Chapter 2, software systems are developed and deployed in a changing
environment that may have significant consequences towards making the system
instable, as such control mechanisms can help in controlling and adapting to
change.

The four predicates of the System Success Realization thus (in form of
requirements) provided a guideline in identifying the other key theoretical

constructs of the final theory.

68

www.manharaa.com

Research Problem as a Choice Rationale

This section presents another rationale for the identifying the key
constructs by relating the research problem to the definition of decision analysis.
The research problem that this study addresses is:

Is there a sufficient theory for the process of developing software systems

that can provide a unified framework for reasoning about how to

incorporate stakeholder values into the myriad “decisions” required to
deliver such systems?

As evident in the research problem, this study is addressing how to
incorporate stakeholder values into the myriad “decisions” required to deliver
such systems. Thus, by the virtue of the research problem, decision theory must
be identified as a key theoretical construct in the resulting theory. As defined
earlier in Chapter 2, a decision is a choice given a set of preferences (utilities), and
partial information on the causality (dependencies) between choices and
outcomes. Per this definition, utility theory and dependency theory are
prerequisites of applying decision theory. Therefore, both are valid theoretical
constructs for the resulting theory. Additionally, as stated in Chapter 2, this study,
and in general the concept of value-based engineering of software systems takes
an open systems view. Since in an open system, environment is not considered

static, forms of control must be applied to prevent any instability resulting from

change. Therefore, choice of control theory is also valid.

69

www.manaraa.com

A Value-Based Theory for Developing Software Systems

Dependency
Theory

What values are important?
How do dependencies How is success assured?

How important are the
affect value realization?

values?

How to adapt to change
and control value
realization?

Control Theory

Figure 14. The 4+1 Theory -- Key Constructs
Also Figure 5

How do values determine
decision choices?

Decision Theory

Figure 14 summarizes the “4+1” structure of the VBTSE. The engine in the
center is the success-critical stakeholder (SCS) win-win Theory W, which addresses
the questions of “what values are important?” and “how is success assured?” for a
given systems engineering enterprise. The four additional theories that it draws
upon are dependency theory (how do dependencies affect value realization? On
what stakeholders does success depend), utility theory (how important are the
values?), decision theory (how do stakeholders’ values determine decisions?), and

control theory (how to adapt to change and control value realization?).

70

www.manharaa.com

Dependency theory

Suppose that a system’s original requirements specify a one-second
response-time for a large order-processing system. However, the best available
COTS database management systems only provide a two-second response time
for the system’s expected workload. In most cases such a one-second response
time will be re-evaluated to match the best available COTS product. Building one’s
own database management server would be the other option, but usually
infeasible due to budget and schedule constraints (it’s not a requirement if you
can’'t afford it). As such, a dependency among a system’s response time
requirements, what a COTS product offers, and the time and cost constraints is
established.

We should care about dependencies because they can help decision-
makers:

(a) Make better decisions by aligning system decisions with stakeholder values
and the organizational context;

(b) llluminate conflicting stakeholder value propositions between before they
turn into serious problems;

(c) Uncover factors that are external to the system and can impact the
project’s outcome.

In the following sections this study shows how different forms of

dependency theories can be used in the course of developing a software system.

71

www.manharaa.com

Huang and Boehm’s (2006) value-based software quality model and Burton and
Obel’s (2004) multi-dimensional contingency model is used to show how system
decisions can be aligned with stakeholder values and the organizational context;
and Al-Said’s (2004) model clash framework is used for identifying stakeholder
value conflicts. Some other significant systems engineering works that address
people-product-process dependencies are Warfield’s Science of Generic Design

(Warfield, 1995) and Checkland’s Soft Systems Methodology (Checkland, 1999).

Aligning System Decisions

If a project manager asks “How much testing is enough before | field my
system?” VBTSE’s response would be “it depends”. A natural follow-up would
then be “On what does it depend”? VBTSE’s response would be on the
stakeholder values, and on the organizational context. For example, (Huang and
Boehm, 2006) provides a value-based software quality model that helps us answer
this question. They show in Figure 3 how different organizations should reason
about their investments on testing. For example, an early start-up will have a
much higher risk impact due to market share erosion than a commercial or a high
finance organization. Therefore, from a risk point of view, it is better for an early
start-up to field a lower quality product than invest on quality beyond the
threshold of negative returns due to market share erosion. In their model,
consequently, they have established a dependency between a system’s quality,

the organization’s business model, and value functions relating expected market
72

www.manaraa.com

share to product introduction date. And, they show how system decisions such as
testing can be aligned such that the project decisions are in alignment with the
stakeholder values in the start-up situation.

Market share erosion, however, is one of many dependencies in an
organization’s context that must be addressed in decision-making. By invoking
contingency theory (Burton and Obel, 2004) show us that an organization’s
context (see Figure 4) not only includes the market (environment) but also various
other elements of an organization. The arrows in the figure indicate empirically
demonstrated dependencies pair wise between the various elements of an
organization’s context.

For example, if an organization’s strategy is based on product leadership
then the project will have a high risk impact not only from market share erosion
but also from lack of novelty (Treacy and Wiersema, 1997; Burton and Obel,
2004). Therefore system decisions should be made such that they are aligned with
the overall organizational strategy. For example, many organizations already make
use of “usability labs” to get consumer feedback on the product’s ease of use, and
for the consumers’ perception of the product in comparison to other competitor
products. This helps them establish a measure for novelty and innovation.

In Figure 15, this study further combines the multi-dimensional
contingency model (Burton and Obel, 2004) with the (Boehm, 1989) process

decision table to show an extended view of project dependencies. Figure 15

73

www.manaraa.com

shows that system decisions should also include a project’s objectives, constraints
and priorities (in the Systems column) such that system decisions are also aligned

with its stakeholders’ value propositions and other system-level constraints.

Sl ©
o (=] (=]
. T S8 L,£56
7] (%] > T = O
> @ El = © ISasl o
= I] b & € &8 g =
PROCESS [b= c 590 3B S
M 5 3 f sS5E£8fo
- Which life cycle model should [7] 5 2 2 T oS50 &K
> o o = cC o =< >0
use? (9] o o O Dox €D <O
- Waterfall, V, Spiral or Agile?
D
(O] =
o I c e =
E u“— o) = ©
r n 3 8 173 = @ o 2-
REQUIREMENTS s B = & k=) © s Ss¢&
put () = o
- What should be my 2 28 2 z < % 28
requirements strategy? CSIZEEN - BN = B
- How much system definition is
enough before architecting? 2
(<) ©
| 2 > 2 g
= s =X £ =
ARCHITECTURE ol EN : EEE G
= = [=] =
- What should be my architecture E = g 2 E S
strategy? L © B T e
- How much architecting is enough e
before implementation? o1
= S NS S S cow "i
M oS=sS>» E ©2E &
S EBERE N S T2 o
Gl S S S0 655535 S8 2
TESTING =Ml S SETETESS &
-
- What should be my testing M S53 533888 8= 2
strategy?
- How much testing is enough = _
before I field the system? 2 2 3 %
> = c s o5 <}
A £,8 8 538 &
- >
M= = E5 £ ¢ B
M s2s2 5 3g 8§ £ 8
M s =« S8 & 8 &
Figure 15. A Combined Dependency Model
74

www.manharaa.com

For example, when reasoning about the choice of a life cycle model,
(Boehm, 1989) shows (in the Systems column) that when a system’s growth
envelope is “limited to large”; understanding of requirements, need for
robustness, and architecture understanding are “high”; then using the Waterfall
model is usually the best fit. At the organizational level, (Burton and Obel, 2004)
further show that choice of a life cycle model (they use the term technology) also
depends on the environment’s uncertainty — if there is a high uncertainty in the
environment then a routine technology (Waterfall Model) will conflict with
environment. Further, organizational strategies on product and process
innovation, leadership styles should also be aligned with the choice of process
models. For example, if the level of control is high, preference for delegation is
low, and preference for risk-aversion is high, then agile methods such as Extreme
Programming will conflict with the organization because agile methods are
optimized for change and uncertainty.

Today most practices used in developing software systems are either
value-neutral, or are limited in their unit of analysis — that is, within the
boundaries of a project. They do not explicitly include the stakeholder values or
the organizational context when reasoning about a software system. Instead, they
only optimize on cost and schedule. Using some of the approached described

above, we have shown that identifying such dependencies and aligning system

75

www.manaraa.com

level decisions with the many other elements in Figure 5 is critical to the success

of a project.

Conflicting Stakeholder Value Propositions

A dependency between two elements is established if they interact with
each other. In a dependency relationship two elements could conflict, compete or
with complement each other. The (Al-Said, 2003) study of model clashes (see
Figure 16) show how different stakeholder value propositions can conflict with a
system’s choice of process, product and property models through their underlying
assumptions. The four quadrants in the figure identify the most common project
stakeholders (users, acquirers, developers and maintainers) and the most
common value propositions they usually have. While each line identifies a conflict
between these value propositions, the light gray represent the model clashes that

plagued Bank of America’s MasterNet project (Boehm et al, 2000).

76

www.manharaa.com

Users Acquirers

Many featuras Mission costfeffectivenass

Changeable requirements Limited development budget, schadule
Applications com patibility Government standards compliance
High levels of service Political correctness

Voice in acquisition Development visibility and control

Flaxible contract Rigorous contact
Early availability
Maintainers Developers
Ease of transition Flexible contract
Ease of maintenance Ease of meeting budget and schadule

Applications com patibility Stable requirements

Voice in acquisition Freadom of choice: process

Process Freedom of cheice: team

: Product
Property
Success

Freedom of choice: COTS/reuse

Y3383

Figure 16. Stakeholder Value Conflicts
Adapted from (Al-Said, 2003)

For example, users want many features, such as freedom to redefine the
feature set at any time, compatibility between the new system and their existing
systems, and so on. However, they show that the users’ value propositions conflict
with other stakeholders’ value propositions. For example, the users’ “many
features” conflicts with the acquirers’ “limited development budget and schedule”
and with the developers’ “ease of meeting budget and schedule.”

Using forms of dependency theory is not new to the field of systems
engineering — literature within the engineering field addresses them with terms

such as model clashes, mismatches, conflicts, incompatibility, interoperability, and

7

www.manharaa.com

at various levels of abstraction and stages such as system definition,
requirements, design and analysis, implementation and test traceability and
consistency. There are potentially a very large number of dependencies that can
exist in a system. Some help in connecting — internally or externally. However, not
all are equally important. Some dependencies, when not identified can have a
significant impact on the project’s outcome, whereas others can be identified and
resolved in the course of development. The risk exposure approach exemplified in
Figure 3 is a good framework for prioritizing the dependencies that most
significantly contribute to the project’s outcome. There are many models in
addition to the ones described above that can be used to identify and resolve a
project’s success-critical dependencies. In the following four sections, we provide
some guidance and reference to such models based on the different dimensions

of a project.

The People Dimension

People dependencies are typically rooted in the socio-political dynamics of
an organization. Like environment, these are usually exogenous but also
endogenous, visible in management hierarchies, inter-entity and intra-entity
coordination mechanisms. While people dependencies are usually considered to
be “sticky” because of their socio-political nature, the process of identifying all of
the success-critical stakeholders (including influencing organizations) early into

the project and using techniques such as expectations management and building a
78

www.manaraa.com

shared vision through win-win negotiations can significantly reduce the
complexity of these dependencies. There is a strong body of knowledge on
identifying and understanding dependencies in the people dimensions — the most
prominent ones are found in sociology and organization theories (Parsons, 1977;
March and Simon, 1958; Argyris, 1978; Rifkin, 2004; Daft, 2003); theories about
human systems integration, particularly the integration of macroergonomic and
microergonomic concerns (Booher, 2003); and theories about how people and
initiatives combine to realize successful systems, such as in value chains (Baldwin

et al., 2000) and results chains (Thorp, 1998).

The Process Dimension

Process dependencies are fairly pervasive and originate almost from all the
dimensions — from environmental dependencies, (for example, compliance to the
US Sarbanes-Oxley Act of 2002 required organizations to implement processes
that would provide added accountability and visibility into the projects), or from
product dependencies (for example, intensive use of COTS products requires
processes that allow stakeholder value-propositions to be more emergent through
COTS evaluation than pre-specifiable), or sometimes from people dependencies
(for example, involving the sales personnel in the development of a supply-chain
management system will also require tailoring the development process to
include them as success-critical stakeholders). In addition to the literature

referred to in the above sections, PERT/Critical Path Methods (Wiest and Levy,
79

www.manaraa.com

1977), system dynamics (Forrester, 1961), and network flow theory (Ford and
Fulkerson, 1962) are also some good approaches in identifying process

dependencies.

The Product Dimension

Product dependencies are usually the biggest source of dependencies for a
given systems and software project. As with process dependencies, they are
influenced by all the four other (environment, people, process, and property)
dimensions. However, with the advent of COTS and other technology alternatives
available today, they also have strong influences on the process and property
dimensions. For example, choice of a system’s architecture and architectural
components will directly depend on the environment, people, processes used, and
budget/schedule/performance properties. Conversely, a COTS-intensive system
will also influence the process and properties. Traditional systems engineering
theory such as (Wymore, 1967) provide good coverage of product dependencies.
For identifying software and system architectural dependencies, (Alexander, 1979;
Rechtin, 1991; Shaw and Garlan, 1996; Clements et al., 2003) are excellent

sources.

The Property Dimension

Property dependencies deal with the “ilities” of a system and have a

unique role in the dependency network as cross-cutting influences. As seen in

80

www.manharaa.com

Figure 5, acquirers of a system are usually more interested in properties such as
cost, schedule, ROI, and value-addition; users in performance, usability, safety,
and privacy; developers in cost, schedule, and reusability; etc. Property
dependencies as such directly relate to the value-propositions of the stakeholders
and thereby the project’s bottom line. They also frequently drive the nature of
product models (Clements et al., 2002) or process models, such as for safety-
critical systems. Overall property characterizations and influences are addressed
in (Boehm et al., 1973) and (Chung et al., 1999). For engineering economics,
(Newnan, 2004; Marschak and Radner, 1972; Boehm 1981) are a few excellent

sources for understanding and dealing with property dependencies.

Utility Theory

Utility theory helps in understanding the preferences (utilities) of a
software system’s success-critical stakeholders. Misunderstanding SCS utility
functions does not guarantee failure if an enterprise happens to get lucky. But,
understanding how the SCSs want to win is essentially a necessary condition for
WinWin achievement. Utility theory also has several branches, such as the
satisficing criterion of bounded rationality (Simon, 1957), multi-attribute utility
theory (Keeney-Raiffa, 1976), and its situation-dependent aspects such as the

Maslow needs hierarchy (Maslow, 1954) stating that lower-level needs (food and

81

www.manaraa.com

drink; safety and security) have dominant utilities when unsatisfied and negligible
utilities when satisfied.

Dependency theory aids utility theory by providing stakeholders with
assessments of the dependencies and tradeoff relationships among their value
propositions, including assessments of the relative costs and benefits of options to
reduce risk by buying information on the state of nature via prototyping,

modeling, simulation, etc.

Decision Theory

Decision theory helps in having a software system’s SCSs negotiate win-win
plans. As explained in Chapter 2, the theory has many perspectives, such as
normative, descriptive, and prescriptive, and different application techniques such
as in (Raiffa, 1982; Fisher and Ury, 1981; von Neumann and Morgenstern, 1944;
Luce and Raiffa, 1957; Keeney and Raiffa, 1976; Blackwell and Girshick, 1954;
Luehrman, 1998). This study takes a normative approach by being explicitly
requiring that stakeholders decide on a process and a product plan based on the

values of all the success-critical stakeholders.

Control Theory

Control theory helps in controlling progress toward stakeholder value
realization by adapting to external changes. As stated in Chapter 2, the necessary

conditions for successful enterprise control are observability (the ability to
82

www.manharaa.com

observe the current enterprise state), predictability (the ability to predict whether
the enterprise is heading toward an unacceptable state), controllability (the ability
to redirect a project developing a software system towards an acceptable near-
term state and a successful end state), and stability (the avoidance of positive
feedback cycles that cause control systems to overcompensate and become
unstable).

Particularly for the VBSE theory, it is more important to apply control
theory principles to the expected value being realized by the project rather than
just to project progress with respect to plans. Traditional “earned value” systems
have their uses, but they need to be complemented by business-value and
mission-value achievement monitoring and control systems as discussed in
(Boehm and Huang, 2003). These involve the use of risk management; adaptive
control functions such as market watch and plan renegotiation; and multi-criteria
control mechanisms such as BTOPP (Scott Morton, 1991; Thorp, 1998) and
balanced scorecards (Kaplan and Norton, 1996). Particularly in an era of increasing
rates of change, this makes both traditional and adaptive control (Highsmith,
2000) necessary conditions for system success in terms of the System Success
Realization Theorem. Dependency theory aids control theory by identifying which
stakeholders and artifacts are affected by sources of change, and by assessing
cost, schedule, and performance implications of alternative responses to change

requests.

83

www.manaraa.com

Chapter 4: To Practice

This chapter illustrates how the theory is operationalized in practice.

4b, 6b. Option, solution
development & analysis

Dependency Theory

2. Identify SCSs 3. 5CS Value
Propositions

2a. Benefits Chains
3b, 4b, 6b. Cost/

4a. SCS

schedule)
performa/nce 3b, 6a. Solution expectations

tradeoff: Analysis management | 4b, 6b.
radeom Prototyping

4. SCS Win-Win
Negotiation

5, 6¢. Refine, Execute,
Monitor & Control Plan

1. Protagonist goals
3a. Solution exploration
6. Risk, opportunity,

change management

Control Theory Decision Theory

5a, Gf- ‘State measgrement, 4b. Investment analysis, Risk
prediction, correction; analysis

Milestone synchronization
SCS: Success-Critical Stakeholde:

Figure 17. The Process Framework
Also Figure 6

Step 1

Many process models do not address how the system life-cycle process
gets started. With VBSE theory, the process gets started when a protagonist
becomes convinced that existing systems are seriously inadequate, and that
improving them involves connections with/to other success-critical stakeholders.
Step 1 of the process identifies the protagonist or change agent who provides the

motivating force to get a new project, initiative, or enterprise started. As shown in
84

www.manharaa.com

Table 3, protagonists can be organization leaders with goals, authority, and
resources, entrepreneurs with goals and resources, inventors with goals and ideas,

or consortia with shared goals and distributed leadership and resources.

Table 3. Frequent Protagonist Classes

Leader with Goals, Baseline Agenda | X X X X

Leader with Goals, Open Agenda X X X

Entrepreneur with Goals, Baseline X X X

Agenda

Entrepreneur with Goals, Open X X

Inventor with Goals, Ideas X X

Consortium with Shared Goals X (X) (X)
Step 2

Step 2 takes a software systems project to the province of dependency
theory with particular emphasis on environment, organizations, and people
dimensions. In this step, the unit of analysis is people and organizations, and their
affiliations with respect to the environment through techniques such as DMR’s
Results Chain Analysis (Thorp, 1998), social-network analysis, ethnographic
analysis, macro-ergonomic analysis, and context-of-use analysis (Booher, 2003).
For example, applying results chain analysis to a supply-chain organization would

identify success-critical stakeholders such as the suppliers, distributors, retailers,

85

www.manharaa.com

users, regulatory bodies that control the standards of the products manufactured;
along with their relationship to the environment; position in the value chain; and
assumptions about the cooperativeness or adversity of these stakeholders and

with respect to the market place (competitors and potential new entrants).

Step 3

Step 3 basically involves identifying the utilities (stakeholder values) of all
success-critical stakeholders, but also includes some initial solution exploration
and cost, schedule, performance analyses. In this step, our unit of analysis spreads
through the product and property dimensions and using stakeholder value
propositions, a first-cut dependency network is created. In addition to common
value propositions of internal stakeholders, Steps 2 and 3 together also often
identify product dependencies from external stakeholders such as the distributors,
suppliers and retailers requiring compatibility with their existing systems —

generating additional sources of product dependencies.

Steps 4,5 and 6

Steps 4 and 6 are similar in their approaches to identifying dependencies,
negotiating with stakeholders, doing business analyses, identifying decision
options and establishing control parameters — they are applied in different phases

of the project. Step 4 is done before the implementation phase (until the

86

www.manaraa.com

development team has committed to a single architecture and established its
feasibility) and Step 6 is after the project has moved forward to the
implementation phase. Step 6’s need and rationale is based on the emergent
nature of requirements (people dependencies), high rate of technology change
(product dependencies), and market volatility (environment dependencies).

In Steps 4 and 6, the process framework basically gets into an iterative
loop that continues until a win-win equilibrium is achieved and all stakeholder
value propositions have been satisfied. The loop begins with some expectations
management, progresses forward through stakeholder win-win negotiations,
business analyses and in the process continues to uncover additional product-
process-property dependencies by way of prototyping, architecture property
tradeoff analysis, and limited-resource (cost, schedule, key personnel, etc.)
tradeoff analysis; using risk management techniques such as buying information,
risk avoidance, risk transfer, risk reduction, and risk acceptance.

A note on product dependencies and expectations management in Step 4
must be made. As mentioned earlier, product dependencies are by far the largest
source of interoperability problems and a primary reason for high costs in building
and maintaining next generation systems. For example, stakeholder value
propositions such as users wanting compatibility with their existing products, and
thereby requiring new systems to integrate with legacy systems has been a very

common source of product dependencies. Also with continued evolution of COTS,

87

www.manaraa.com

having to integrate different COTS products amongst each other and then with the
legacy systems, a project often commits to undesired low-flex, low-freedom
product dependencies. Identification and resolution of such product dependencies
early into the project helps discover a solution space into regions such as feasible,
not-feasible, or somewhat-feasible regions based on their dependencies. Step 4 in
anticipation of these product dependencies and sometimes others as well,
requires an upfront expectations management with all success-critical
stakeholders paving the way for a successful win-win negotiation.

If an organization has used steps 1-4 to identify dependencies, determine
their value propositions, and develop business cases, it has developed the
framework for Step 5 — to monitor expected value realization, adjust plans, and
control progress toward real SCS value achievement. As with the dependency
analyses, project planning, executing, monitoring, adapting, and controlling in
Step 5 proceed incrementally in increasing amounts of detail, generally following a
risk-driven spiral process. Questions such as “how much is enough planning,
specifying, prototyping, COTS evaluation, business case analysis, architecting,
documenting, verifying, validating etc.?” are best resolved by balancing the risk
exposures of doing too little or too much. As Risk Exposure = Probability (Loss) *

Value (Loss) is a value-based concept, risk balancing is integral to the theory.

88

www.manaraa.com

Chapter 5: Results

This chapter discusses the results of applying the theory and the process
framework on six case studies. The questionnaire used for reviewing each case
was derived from an analysis framework built from the process framework and
the “4+1” theories as in Table 4. While this chapter only briefly discusses each of
the cases to put the many derived insights in context, further discussion on each

of the them are provided in Appendices A through E.

Table 4. Analysis Framework

“4+1”
Theories

Cause Explanation

Potentially incomplete or incorrect
requirements leading to a product that
stakeholders will not approve for
further development or release.
(example: the sales staff reject a newly
acquired order-entry and processing
system because it does not track sales
credits)

Suboptimal resource planning and
allocation may lead to resource crunch

Project fails to identify its
UTILITY success-critical stakeholders
and their value propositions

Project fails to prioritize

UTILITY requirements (example: 3 months was spent
g implementing feature A which was not
even important for the release)
Any deviations from expected results
Project does not manage may lead to noncoopgrat!on (example:
UTILITY . 3 seconds response time is
expectations ; . .
unsuccessful if 1 second is promised,
but successful if 5 seconds is promised)
Incorrect requirements leading to
Project does not engage in stakeholders rejecting the system
UTILITY . o : .
prototyping (example: display information

overload)

89

www.manaraa.com

Table 4. Continued

“4+1H
Theories

DEPENDENCY

DEPENDENCY

DEPENDENCY

DEPENDENCY

DECISION

Cause

Project fails to identify its
organizational dependencies

Project fails to identify
interdependencies between
stakeholder values

Project fails to identify
product interdependencies

Project fails to identify process
interdependencies

Project fails to negotiate a
win-win product/process plan

Project fails to use risk to
establish feasibility and
commitment

Project does not have a
business case

Explanation

Changes in organization can
significantly affect the project (a recent
corporate restructuring effort
impacted the product's design, takes
away resources)

Usually breaks the win-win equilibrium
leading to adverse consequences
(example: marketing staff puts in a
request for feature X, this increases
response time affecting operations
staff, loser will fight using the system)

Leads to significant design changes,
rework (example: architectural
mismatch, such as feature A uses SOAP
and interfaces with external vendor
product using REST)

Suboptimal resource planning and
allocation may lead to delays and
overruns (example: infrastructure
software not developed in advance,
delaying integration and testing)

Usually breaks the win-win equilibrium
leading to adverse consequences
(example: marketing staff puts in a
request for feature X, this increases
response time affecting operations
staff, loser will fight using the system)
Misguided or wrong decisions, lack of
support from stakeholders, destabilizes
project continuity (example: a key
COTS vendor discontinued support,
leaving the project without a backup
plan)

Misguided decisions (example:
expended $1M on feature A for which
ROl was only 1.2 times over feature B
that may have had 2.6 times return on
investment)

90

www.manaraa.com

Table 4. Continued
L‘4+1’1

Theories Cause Explanation
DECISION
Project fails to use stakeholder Breaks win-win; leads to misguided
values for its product or decisions (example: expended $1M on
process related decisions feature A for which ROl was only 1.2
(initially or during changes) over feature B that may have had 2.6)
CONTROL Project fails to establish a Decreased visibility into project's
control mechanism to track progress (example: feature A takes 3
progress months leaving only 3 months for
features B, C and D where were equally
critical)
CONTROL Project fails to monitor and Decreased visibility into project's
measure stakeholder value success (example: system implemented
all the features in the requirements
document but stakeholders still not
happy)
CONTROL Project fails to adapt its plans Increases technical and financial risk;
to key changes in SCS value breaks win-win (example: expended
propositions $1M on a system that clearly had

missed its market window halfway
through development)

91

www.manharaa.com

Table 5. Summary of Results

UTILITY

DEPENDENCY

w

DECISION

CONTROL

Process

Project identified its

Assessment (Impact when Negative L/M/H)

MasterNet

UniWord

Word

LAS

CMU-SAR

success-critical stakeholders YES NO (H) YES (SI_?)ME YES
and their value propositions

PIEf2ES EHOiES NO(H) NO(H) NO(H) NO(H) YES
requirements

PUBEE MEREG e NO(M) NO(M) N/A NO YES
expectations

Project engaged in SOME

R NO (H) NO (H) M) NO (H) YES
Project identified its SOME

organizational dependencies (M) /e YES NO (L) NO (H)
Project identified

interdependencies between NO (H) NO (H) SOME (L) N/A NO (H)
stakeholder values

_Prolect |dent|f|eq product VES NO (M) NO (M) N/A VES
interdependencies

Project identified process SOME SOME
interdependencies (M)) =S (M) YES
Project negotiated a win-win VES NO (H) VES NO (H) VES
product/process plan

Project used risk to establish

feasibility and commitment YES M) YES NO (H) YES
Project had a business case ~ YES N/A YES YES YES
Project used stakeholder

values for its product

related decisions (initially or s NO (H) 29 NO (H) 29
during changes)

Project used stakeholder

TEAUES 01 1 S EEl o, NO(H) YES NO(H) YES
decisions (initially or during

changes)

Project established a control SOME
mechanism to track NO (M) NO (M) YES (M) YES
progress

Project monitored and

measured stakeholder value MO Moy Ve M) ML
Project adapted its plans to

key changes in SCS value SOME (H) NO (H) YES NO (H) NO (H)

propositions

92

www.manaraa.com

Table 5 provides a summary of the analysis conducted on the first five case
studies. As mentioned in Chapter 1, it is the purpose of this research to assess if a
value-based theory for software engineering can be developed that provides (a)
criteria that distinguish projects that will fail from projects that will succeed and
(b) a process that applies the criteria to enable projects to succeed and
satisfactorily addresses the criteria for a good theory. As such, the goal of the
analysis across the first five case studies was to assess the theory and its derived
process to gauge its strength in identifying success from failure through post-hoc
analyses. In the sixth case study, the goal shifts to case (b) in applying a theory
derived process and evaluating the outcomes through a criteria discussed later in

this chapter and eventually in the next chapter.

Case 1: UniWord
Background

This case study was published in (Boehm, 1981). Universal Micros, Inc. was
developing a new product: An advanced personal computer named UniWindow.
In order to make its product more appealing to its potential customers, Universal
Micros decided to contract with several software houses to produce software
packages for its new personal computer. One such package was the UniWord — a

Word Processor for UniWindow that would be developed by the winning bidder to

93

www.manaraa.com

the Request for Proposal that was based on a set of high-level specifications
provided by Universal Micros.

SoftWizards, Inc., a software contractor, was selected as the winning
bidder among four other companies that had also bid for the contract. With some
past experiences with developing text editors, Soft Wizards believed that winning
this contract would provide a significant value addition to the company.
Therefore, in excitement of this prospective opportunity, SoftWizards agreed to
build the product with a much lower price tag than its competitors.

Within a few months into the project, problems began overshadowing success.
Toward the expected completion date, SoftWizards failed to deliver the product.
This initiated a project audit by Universal Micros, which forms the basis of this

post-hoc analysis.

Analysis Summary

As evident in

94

www.manharaa.com

Table 5, the UniWord project scored very poorly on the theory’s scorecard. The
project overlooked many critical “must-dos” as prescribed by the theory, and
therefore the results were strongly indicative of its eventual failure. However still,
few observations made during the analysis are discussed next.

UniWord as a project failed to identify many key success-critical
stakeholders and their value-propositions, did not have any risk management or
control instruments plans guiding the project, and overlooked multiple
opportunities in the course of the project to establish a win-win across all
stakeholders. The analysis eventually concluded that while UniWord performed
very poorly across all dimensions of the theory, having committed to an extremely
risky project (unrealistic schedule, little discretionary funds, and stakeholder
utilities tied to a fixed date based on an upcoming event) without establishing a
risk management plan perhaps had the strongest impact in contributing towards

failure.

Case 2: BofA MasterNet
Background

This case study was published in (Glass, 1998). In 1982, Bank of America, along
with Seattle-First National, United Virginia, and Philadelphia National initiated the
development of a state-of the-art trust accounting system. Having internally failed

once in doing so and losing $6 million, the consortium of banks contracted

95

www.manaraa.com

Premier Systems to develop their trust accounting system that would manage
their $38 billion portfolio in institutional and personal trusts.

Premier Systems was a relatively new company but its leadership, primarily
Stephen Katz, had a strong background in financial systems and some success
developing such systems through his previous company. With some initial
research into the new system that the consortium of banks required, Premier
began developing the banks’ trust accounting system and promised delivery
within 11 months.

After spending $78 million on development and losses incurred due to the
new system’s malfunctions, the banks finally handed their trust business to a
subsidiary on account of inability to handle trust related services. Along with
financial losses, plenty of bad press such as “$80 Million MIS Disaster” in
newspaper headlines, the bank’s image as a successful technological leader was

negatively changed forever.

Analysis Summary

Bank of America’s MasterNet initiative was a huge undertaking by the
bank. If successful, the project would have brought significant benefits to the
bank’s trust services in terms of customer retention, and attracting new
customers. Therefore, it had a very strong business case but like the UniWord

project it faltered in attending to the many risks that entailed such a project, some

96

www.manaraa.com

attributed to size and complexity and some through the multiple criss-crossing
interdependencies that encompass the project.

In the course of analysis, it was found that overseers of MasterNet faired
very well on a few elements of the theory’s scorecard — such as involving the
various success-critical stakeholders, establishing a win-win product and process
plan, and distributing some of the project risks across other banks by forming a
consortium of banks interested in the developed system. However still, a project
as large as MasterNet not only carries a high risk but also brings many
complexities in building and deploying such a system. When faced with such an
enormously complex system, the theory absolutely requires that the project
engage in expectations management, value and requirements prioritization, and a
phased approach derived from such prioritizations. Additionally, the theory finds it
imperative that strong instruments for monitoring and controlling progress are
put in place to avoid vicious cycles of rework and have a fallback plan should
progress deviates from plans and estimates. The MasterNet project did not have
any such fallbacks, controls or engage in prioritization and expectations
management. It was the prediction of the theory that these factors combined
would steer the project towards failure. In the case of MasterNet, the theory’s

prediction appeared to be consistent with the actual outcome of the project.

97

www.manaraa.com

Case 3: MS Word for Windows
Background

This case study was published in (Kemerer, 1997). Microsoft introduced its
first word processor for the PC called the PC Word in 1983. Having been
disappointed with lukewarm reviews and mediocre sales, Bill Gates in 1984
initiated the development of a new state-of-the-art word processor for its
Windows operating system codenamed Cashmere (later changed to Opus).
Although its schedule slipped significantly from the originally projected ship date,
Microsoft shipped Word for Windows with sales exceeding its own projections,
and received significant critical acclaim press — it was Microsoft's first word

processor to be rated higher than its competitor WordPerfect by InfoWorld.

Analysis Summary

Like the previously discussed cases, Microsoft’s Opus project did a few
things well, and overlooked a few as well. For example, the project did not spend
a considerable amount of effort in prototyping, or identifying some of the critical
product interdependencies in developing a word processor for their Windows
operating system. On the other hand, Opus was extremely effective in adapting to

changes, and in implementing necessary process and monitoring controls as the

need emerged.

98

www.manharaa.com

A significant difference in the case of this project from the others discussed
above was the in the level of risk the project entailed. While true that success of
Opus would make Microsoft a leader in office applications, and also complement
sales of other Microsoft products, failure in delivering Opus would not have
severely affected sales of Windows, Microsoft’s flagship product. This observation
is also consistent with the fact that while Opus kept missing deadlines, other than
some negative media coverage, Microsoft was still flourishing in its business of
other products.

Some other key risk reducing factor in the case of Opus was the experience
Microsoft carried in building word processors for the Mac, availability to
discretionary funds, high levels of commitment towards risk by senior
management, fairly stable market conditions, and finally and most importantly the
company’s experience with managing risk in the development of technically
challenging products.

Based on these observations, the application of theory predicted success
contingent on these risk-reducing factors remaining stable, but at the same time
also predicted adverse outcomes in terms of meeting deadlines — mainly
attributed towards lack of efforts in prototyping or upfront planning. These
predictions were consistent with the actual outcome of the project. Microsoft
successfully delivered Windows for Word however in doing so it took five years

versus the initial plan of on year.

99

www.manaraa.com

Case 4: London Ambulance Service
Background

This case study was published in (Finkelstein, 1993). London Ambulance
Service (LAS) was in the business of dispatching ambulances to individuals
requiring urgent medical care. As such, when an emergency call is received by the
LAS, ambulances are dispatched based on an understanding of the nature of the
call and the availability of resources. In 1991, after LAS’ management felt that an
automated centralized ambulance service was essentially the way forward, it
formed a small teams and assigned it the responsibility for generating a request
for proposal (RFP), and thereby identify a contractor based on the meritocracy of
each proposal submitted. Schedule and cost were the two most critical drivers for
the team in identifying a suitable contractor.

After spending a few months developing an initial set of specifications for
such an automated systems that formed the basis of LAS’ RFP, the cheapest
tender was accepted and a new system was developed and introduced the
following year. The newly developed system however turned out to be a complete
failure, resulted in a few casualties and was eventually rejected by LAS. Today, it is

considered as a classic point of reference for “software disasters”.

100

www.manharaa.com

Analysis Summary

Many software systems fall into the category of “socio-technical systems”
—aterm loosely used to describe systems that permeate deep into the human
ecosystem. Such systems affect human behavior, and often penetrate into a
society that requires change at various levels. While today most software systems
are perhaps socio-technical systems however, the term is usually used to classify
systems when its impact on society is much greater than other systems. Many
public welfare systems fall into this category, and special care must be given in
designing and developing such systems.

For example, consider a system design scenario when there are two
incidents requiring immediate medical attention however only one ambulance is
available. Therefore projects engaged in building such systems carry enormous
risks, and the theory recommends that a strong risk management plan be
developed to help steer the project.

LAS’ approach towards risk management left much to be desired. The CAD
project ignored many success-critical stakeholders and their value propositions;
failed to identify all of the key interdependencies across various dimensions; did
not establish a win-win set of plans or establish feasibility and commitment with
success-critical stakeholders; made value-agnostic and risk-agnostic decisions; and

failed to orchestrate instruments of monitoring and control. The theory predicted

101

www.manaraa.com

catastrophic failure, again consistent with the actual outcome as reported in the

case study.

Case 5: CMU Surface Assessment Robot
Background

This case study was published in (Latimer, 2007). The study examines a
project undertaken by CMU as a contractor to build a robot that can inspect the
smoothness of a road surface while maintaining the same inspection quality as the
manual method historically employed. While the project successfully delivered a
robot that was designed right to the specifications, and if made operational would
have also satisfied the estimated return on investment, it was however not

transitioned into operational use.

Analysis Summary

One distinguishing element of the 4+1 theory from many other software
engineering theories is the emphasis it places on organizational dependencies.
CMU’s project on constructing a surface assessment robot is an excellent case in
point where an organizational dependency when left unattended jeopardized the
entire project from achieving success.

This project had taken extreme care in identifying and involving different

stakeholders in the development of a surface assessment robot. Requirements

102

www.manharaa.com

analysis, prototyping, solid designs, and thorough implementation were some of
the highlights of the project. Both technical and management decisions were
made in a win-win environment, and the case per se had little evidence if any, to
the contrary.

However, when VBSE theory was applied to this case, it predicted failure.
Two primary reasons for this was 1) the acquiring organization was in the process
of being acquired by another organization resulting in significant shifts in
organizational control and 2) new stakeholders emerging from this acquiring
organization were not identified as a success-critical stakeholder. This therefore
led to key changes in stakeholder value propositions, and thereby destabilizing the
win-win equilibrium of the project.

From the theory’s point of view this particular case was unique because it
helped illustrate the theory’s completeness, and once again its ability to identify

success from failure.

Insights

Analyzing the above-discusses case studies by way of applying the theory
and process appeared to be extremely productive. Predictions made by the theory
were consistent with the outcomes documented by the authors of the case
studies. Some further insights gained in conducting this analysis seemed to be

worth noting in light of future work on this topic. These will be discussed next.

103

www.manaraa.com

Preferences, risk and maturity

Some of the analyzed case studies such as UniWord, MasterNet and
London Ambulance omitted many of the theory recommended steps early into the
project. Further analysis revealed that the impact of such omissions create a very
strong ripple effect downstream, making the project almost unmanageable. While
this observation appeals to intuitive reasoning, it also brings some additional
situations that theory should address.

For example, a project that has suffered a trouble start in its inception will
require much more risk management downstream than others. In such extreme
situations, the theory may suggest a more risk-taking behavior assuming that the
company is mature in handling high risk situations. However, certain organizations
are more risk-averse than others — sometimes because they lack the adeptness or
experience required to manage extreme risk or, simply as a matter of preference.
The converse is true as well. Certain organization may prefer risk-taking behavior
regardless of their maturity in handling risky situations while the theory may
suggest a more risk-averse approach.

In the case of UniWord for example, after having discovered that the
project is significantly off schedule and that the stakeholders’ value function
exhibits a step function (value heavily diminishes after a certain cut-off point),

SoftWizards continued to expend critical resources in fixing the project — clearly

104

www.manaraa.com

exhibiting a risk-taking behavior while not having the required experience and
maturity in managing high risk.

In summary, this analysis recommends that future work should also
consider complimenting decision theory to account for both, risk preferences as

well as an organization’s maturity to manage high risk.

Case 6: SMB with VBSE

In the previous cases, each case study was reviewed to show how the
theory and the process proposed in this study could have identified and avoided
the problems in each of the cases presented above. In this section, project SMB-0
as in (“SMB-07, 2005) is recreated with the same backdrop but using the theory
and the process. It shows how SMB-0 could have been implemented using the

theory and its derived process framework.

Sierra Mountainbikes Opportunities and Problems

Grant Golden began by convening his management and technology
leaders, along with a couple of external consultants, to develop a constructive
shared vision of Sierra Mountainbikes’ primary opportunities and problems. The
results determined a significant opportunity for growth, as Sierra’s bicycles were
considered top quality and competitively priced. The major problem area was in
Sierra’s old manual order processing system. Distributors, retailers, and customers

were very frustrated with the high rates of late or wrong deliveries; poor
105

www.manaraa.com

synchronization between order entry, confirmation, and fulfillment; and
disorganized responses to problem situations. As sales volumes increased, the
problems and overhead expenses continued to escalate.

In considering solution options, Grant and his Sierra team concluded that
since their primary core competence was in bicycles rather than software, their
best strategy would be to outsource the development of a new order processing
system, but to do it in a way that gave the external developers a share in the
system’s success. As a result, to address these problems, Sierra entered into a
strategic partnership with IPC for joint development of a new order processing
and fulfillment system. IPC was a growing innovator in the development of supply
chain management systems (an inventor with ideas looking for protagonist leaders

with compatible goals and resources to apply their ideas).

Step 2: Identifying the Success-Critical Stakeholders (SCSs)

Step 2 in the VBSE process shown in Figure 1 involves identifying all of the
success-critical stakeholders involved in achieving a project’s goals. As seen in
Figure 2, the Step 2a Benefits Chain jointly determined by Sierra and IPC, this
includes not only the sales personnel, distributors, retailers, and customers
involved in order processing, but also the suppliers involved in timely delivery of

Sierra’s bicycle components.

106

www.manaraa.com

The Benefits Chain includes initiatives to integrate the new system with an
upgrade of Sierra’s supplier, financial, production, and human resource
management information systems. The Sierra-IPC strategic partnership is
organized around rewards reflecting both the system’s benefits chain and
business case, so that both parties share in the responsibilities and rewards of
realizing the system’s benefits. Thus, both parties share a motivation to
understand and accommodate each other’s value propositions or win conditions
and to use value-based feedback control to manage the program of initiatives.

This illustrates the “only if” part of the Fundamental System Success
Theorem. For the “if” part, if Grant had been a traditional cost-cutting, short-
horizon executive, Sierra would have aggressively contracted for a lowest-bidder,
fixed-price order processing system, and would have ended up with a buggy,
unmaintainable stovepipe order processing system and many downstream order-
fulfillment and supplier problems to plague its future. In terms of the framework
in Figure 18, however, Sierra and eServices used the Benefits Chain form of
Dependency Theory to identify additional SCSs (sales personnel, distributors,

retailers, customers, suppliers) who also need to be brought into the SCS WinWin

equilibrium state.

107

www.manharaa.com

Customers

Distributors

Customers

Distributors

Assumptions
- Increasing market size
- Continuing consumer satisfaction with product

- Satisfactory manufacturing planning & control system

- Relatively stable e-commerce infrastructure
- Continued high staff performance

New order
New order fulfillment
fulfillment system processes,

outreach, training

Safety, fairness inputs Interoperability inputs

Less time, Faster, Increased
fewer better sales,

errors per order profitability,
order entry Increased customer

Less time, fewer
errors in order

entry step customer satisfaction

satisfaction,

system

processing decreased
operations costs,
I 1
Faster order entry On-time
steps, errors assembly

Outcome

New order entry Improved supplier

processes, S
ol outreach, training coordination
Initiatives !
D ——

Contributions Suppliers

Figure 18. Benefits Chain for Sierra Supply Chain Management

Step 3: Understanding SCS Value Propositions

Step 3 primarily involved utility theory. But it also involved Theory W in
reconciling SCS win conditions with achievable solutions (Step 3a), and various
forms of dependency theory in conducting cost/schedule/performance solution
tradeoff and sensitivity analyses (Step 3b).

For example, the suppliers and distributors may identify some complex
exception reporting, trend analysis, and customer relations management features
they would like to have in the system’s Initial Operational Capability (IOC) in early

2005. However, the use of forms of dependency theory such as software cost and

108

www.manharaa.com

schedule estimation models may show that there is too much proposed I0C
software to try to develop by the I0C date.

In such a case, Sierra and IPC will have to revisit the SCSs’ utility functions
in Step 4a (expectations management) by showing them the cost and schedule
model credentials and results, and asking them to recalibrate their utility
functions, prioritize their desired features, and participate in further solution
exploration (a go-back to Step 3a) to achieve a win-win consensus on the top-
priority subset of features to include in the I0OC.

It may be in some cases that the SCSs’ IOC needs are irreconcilable with
the I0C schedule. If so, the SCSs may need to live with a later I0C, or to declare
that a SCS win-win state is unachievable and to abort the project. Again, it is

better to do this earlier rather than later.

Step 4: Managing Expectations; SCSs Negotiate a WinWin Decision

Actually, the previous paragraph anticipates the content of Step 3, in which
the SCSs negotiate a win-win decision to commit themselves to go forward. Once
the SCSs have identified and calibrated their Win Conditions in Step 3 and 4a, the
process of identifying conflicts or Issues among Win Conditions; inventing and
exploring Options to resolve Issues; and converging on Agreements to adopt Win
Conditions or Options proceeds as described in the WinWin Negotiation Model

above.

109

www.manaraa.com

In a situation such as the Sierra supply chain project, the number of SCSs
and the variety of their win conditions (cost, schedule, personnel, functionality,
performance, usability, interoperability, etc.) means that multi-attribute decision
theory will be involved as well as negotiation theory. Susan will also be concerned
with investment theory or business case analysis to assure her stakeholders that
the supply chain initiative will generate a strong return on investment. As many of
the decisions will involve uncertainties (market trends, COTS product
compatibilities, user interface choices), forms of statistical decision theory such as
buying information to reduce risk will be involved as well.

User interface prototypes are actually ways of buying information to
reduce the risk of misunderstanding SCS utility functions, as indicated in Figure 17
by the arrow between decision theory and utility theory. The other components of
Step 4b in Figure 1 involve other aspects of dependency theory, such as
performance analysis, business case analysis, or critical-path schedule analysis. As
also shown in Figure 17, these analyses will often proceed at increasing levels of
detail in supporting steps 3a, 4a, and 6a as the project proceeds into detailed

design, development, integration, and test.

110

www.manharaa.com

Table 6 summarizes the business case analysis for the Sierra project. Dollar values
are all in millions of 2004 dollars ($M) for simplicity. The analysis compares the
expected sales and profits for the current system (columns 4, 5) and the new
system (columns 7, 8) between 2004 and 2008, the cumulative increase in profits,
investment cost, and resulting return on investment (columns 11-13), and
expected improvements in other dimensions such as late delivery and customer
satisfaction (columns 14-17). The bottom line is a strong 2.97 ROI, plus good
expected outcomes in the customer satisfaction dimensions.

The negotiations converge on a number of win-win agreements, such as
involving the suppliers and distributors in reviews, prototype exercising, and beta-
testing; having Sierra provide eServices with two of their staff members to work
on the software development team; and agreeing on compatible data definitions
for product and financial interchange. At one point in the negotiation, an
unfortunate go-back is necessary when an Agreement on a product definition
standard is reversed by the management of one of the distributors, who disclose
that they are now committed to an emerging international standard. After some

renegotiation, the other SCSs agree to this at some additional cost.

111

www.manharaa.com

Table 6. Expected Benefits and Business Case

o™ < Lo [{e] N~ (0]
S § & &8 8 8
— — — — — —
Q Q Q Q Q Q
N N N N N N
— — — — — —
Market Size ($M) 0] 00 40 0] 20 0
— Market Share % 20 20 20 20 20 20
z =
Ll
8:: E Sales 72 80 88 96 104 112
= w
© Profits 7 8 9 10 11 12
Market Share % 20 20 22 25 28 30
Sales 72 80 97 120 146 168
Profits 7 8 10 13 16 19
0
.g Cost Savings 0 0 2.2 3.2 4 4.4
=
_E Change in Profits 0 0 3.2 6.2 9 11.4
LL
Cum. Change in Profits 0 0 3.2 9.4 184 2938
Cum. Cost 0 4 6 6.5 7 7.5
ROI 0 -1 -0.47 0.45 1.63 2.97
Late Delivery % 124 114 7 4 3 2.5
[72]
g Customer Satisfaction (0-5) 1.7 3 4 4.3 4.5 4.6
e
§ Ease of Use (0-5) 1.8 3 4 4.3 4.5 4.6
O
In-Transit Visibility (0-5) 1 2.5 315 4 4.3 4.6

112

www.manharaa.com

Steps 5 and 6: Planning, Executing, Monitoring, Adapting, and
Controlling

As with the dependency analyses, project planning, executing, monitoring,
adapting, and controlling proceed incrementally in increasing amounts of detail,
generally following a risk-driven spiral process. Questions such as “how much is
enough planning, specifying, prototyping, COTS evaluation, business case analysis,
architecting, documenting, verifying, validating etc.?” are best resolved by
balancing the risk exposures of doing too little or too much. As Risk Exposure =
Probability (Loss) * Value (Loss) is a value-based concept, risk balancing is integral
to the theory.

Value-based planning and control differs most significantly from traditional
project planning and control in its emphasis on monitoring progress toward value
realization rather than towards project completion. Particularly in an era of
increasing rates of change in market, technology, organizational, and
environmental conditions, there is an increasing probability that managing to a
fixed initial set of plans and specifications will produce systems that are out of
step and non-competitive with projects managing adaptively toward evolving
value realization.

Traditional control mechanisms such as the earned value management,
assigns “value” to the completion of project tasks and helps track progress with

respect to planned budgets and schedules, but has no way of telling whether
113

www.manaraa.com

completing these tasks will add to or subtract from the business value or mission
value of the enterprise. Example failure modes from this approach are systems
that had to be 95% redeveloped on delivery because they failed to track evolving
requirements and startup companies that fail to track closure of market windows.

If an organization has used steps 1-4 to identify SCSs, determine their value
propositions, and develop business cases, it has developed the framework to
monitor expected value realization, adjust plans, and control progress toward real
SCS value achievement. Table 7 shows how this could be done for the Sierra

project, based on the initial budgets, schedules, and business case in

114

www.manharaa.com

Table 6. The planned achievables are above the line in each cell of Table 7; the
actuals are below. Value-based monitoring and control for Sierra requires
additional effort in terms of technology watch and market watch, but these help
Sierra to discover early that their in-transit-visibility (ITV) COTS vendor was
changing direction away from Sierra’s needs.

This enabled Sierra to adapt by producing a timely fallback plan, and to
proactively identify and approach other likely ITV COTS vendors. The results, as
shown in the ITV column and explained in the Risks/Opportunities column of
Figure 4, was an initial dip in achieved ITV rating relative to plans, but a recovery
to close to the originally planned value. The Risks/Opportunities column also
shows a “new hardware competitor” opportunity found by market watch activities
that results in a $200K hardware cost savings that mostly compensated for the
added software costs of the ITV fallback. The use of prioritized requirements to
drive value-based Pareto- and risk-based inspection and testing is another source

of software cost savings.

115

www.manharaa.com

Table 7. Value-Based Expected/Actual Outcome Tracking

c

— =] »n

— 2 '.5 Q

< b=]

&= 3 % £z 5

= = > £

g = & 5 2 g & 2 S

w = © fust = > — 172} [oX

[— — Y—

g ¢ 8¢ 3 % % s 5 5

() = A — E — [} +— () §

5 38 o 8 g = S5 O ® 3 E 3 =2

9] O o = < < O x 4) = w
Life Cycle 1 3/31/04 | 400 20 2 |1 2 |17

Architecture 1
3/31/04 7 20 | 72 7 12 1.7

SWinit.Op. | 9/30/04 | 1400
Cap. (10C)
9/30/04 | 1532

Deployed 12/31/04
loc =
12/20/04

FullOp.Cap. | 7/31/05 | 5200 | 1000
ceb - | |7
7/28/05

FullOp.Cap. | 19/31/05 | 6000 | 2200 | 22 | 106 | 12 | 3.2
Deployed
12/20/05 | 5977 | 2483 | 24 | 115 |14 |51 |0 |48 |41 |33 4.2

1S

(1) Increased COTS ITV risk, fallback identified.
(2) Using COTS ITV fallback; new HW competitor; renegotiating HW.
(3) $200K savings from renegotiated HW.
(4) New COTS ITV source identified, being prototyped.
(5) New COTS ITV source initially integrated.
(bold) Interim ratings based on trial use

The bottom-line results are a good example of multi-attribute

quantitative/qualitative balanced-scorecard methods of value-based monitoring,

116

www.manharaa.com

adaptation, and control. They are also a good example of use of the necessary
conditions for value-based control based on control theory. A traditional value-
neutral “earned value” management system would fail on the criteria of business-
value observability, predictability, and controllability, because its plans,
measurements, and controls deal only with internal-project progress and not with
external business-value observables and controllables. They also show the value
of adaptive control in changing plans to address new risks and opportunities,
along with the associated go-backs to revisit previous analyses and revise previous

plans in Steps 6a, 6b, and 6c¢.

117

www.manharaa.com

Chapter 6: Conclusions and Recommendations

Review of Problem

In chapter 1, this study made a case for using value-based approaches in
the development of software systems. Two problems with existing approaches
were identified — value-disconnect and context disconnect. Value disconnect is the
phenomenon when decisions about software systems are made without
incorporating success-critical stakeholder values. A software system is a means to
an end, not an end per se. Stakeholder values are the ends that the software
system must deliver. If stakeholder values are not incorporated in such decisions,
then it essentially becomes a matter of chance that random decisions will lead to
realizing the stakeholder values.

A context disconnect refers to the phenomenon when a software system’s
context such as the organization and its environment are not taken into
consideration. Chapters 1 and 3 showed how a software system is often
dependent on many organizational characteristics, such as the organization’s
strategy, management style, group climate, structure, size, and environment.
These dependencies could either serve as constraints on the way software

systems are developed, or provide guidance for realizing greater benefits. In either

118

www.manaraa.com

case, a software system’s context must be included in decision making and

control.

Review of Purpose

The purpose of this research was to see if a value-based theory for
software engineering be developed that provides (a) criteria that distinguish
projects that will fail from projects that will succeed and (b) a process that applies
the criteria to enable projects to succeed and satisfactorily addresses the criteria
for a good theory.

For validation, a combination of logical analysis, integration of well-
established theories, elaboration of the less well-established dependency theory,
and use of available quantitative results in value-based software engineering was
performed in Chapters 3 and 4. In Chapter 5, these results were complemented

by the analysis of six diverse case studies.

Review of Results

In Chapter 3, semiformal proofs of the two fundamental theorems of
value-based software engineering were developed. The Fundamental System
Success Theorem establishes success-critical stakeholder win-win conditions for

creating a successful system.

119

www.manharaa.com

The System Success Realization Theorem establishes conditions for making
winners of the success-critical stakeholders:

(@) Identifying all of the SCSs.

(b) Understanding how the SCSs want to win.

(c) Having the SCSs negotiate a win-win set of product and process plans.

(d) Controlling progress toward SCS win-win realization, including

adaptation to change.
These were mapped onto the major theories supporting the four

conditions: dependency theory, utility theory, decision theory, and control theory.

In Chapter 4, a 4+1 architecture was developed for the main theory and
the four supporting theories, and a 6-step process was derived for projects to use

in applying the theory.

In chapter 5, six case studies were reviewed using a set of questions
derived independently for each of the 4+1 theories (see Appendix A for the list of
questions). In all the six cases, the theory was able to diagnose the project in
terms of success and failure. For example, in the Uniword and MasterNet case
studies, it was observed that the project not only failed to identify all of its
success-critical stakeholders, it also failed to identify the organizational
dependencies which in turn allowed the project to make decisions in isolation

from the organization and its needs. As such, the prediction of the theory

120

www.manharaa.com

corroborated with the outcome of the projects, both the projects were

unsuccessful.

Relations to Criteria for a Good Theory

The study reviewed a number of sources of criteria for a good theory, and
converged on the following composite list for evaluating the theory: sufficiency,
necessity, utility, generality, practicality, preciseness, and falsifiability. A

summary of the resulting evaluations is provided next.

Sufficiency

According to Swartz (1997):

“A condition A is said to be sufficient for a condition B, if (and only if) the

truth (/existence /occurrence) [as the case may be] of A guarantees (or

brings about) the truth (/existence /occurrence) of B.”

That is, in the context of this study, to show that the five theoretical
constructs were sufficient for the theory. In chapter 5, the theory was applied to
multiple case studies. In each case, the theory’s prediction corroborated with the
actual outcome of the case. Further, an alternative version of SMB-Zero was
reconstructed as SMB-VBSE to show that the theory was sufficient in guiding the
project across all situations that had originally developed in SMB-Zero.

An additional note on the equifinality characteristic of the sufficiency

condition must also be made. Sufficiency is established when A is enough for B (A

121

www.manharaa.com

is sufficient for B if and only if A brings about B) however, there may be another
way, say C, that could also bring about B. Since the theory brought about the
desired outcomes in the case studies, it is sufficient in their contexts.

However, logical analysis of the sufficiency proof for the System Success
Realization Theorem indicates that conditions (a) through (d) may not always be
realizable. In particular, for condition (c), fundamental differences may exist
among the success-critical stakeholders, making it impossible to negotiate a win-
win outcome. Also, for condition (d), an unpredictable show-stopper may impact
the project, such as a loss of budget or a radical change in executive personnel and
priorities. In such cases, the theory is still valuable in detecting such situations

early and minimizing adverse impacts of terminating the project.

Necessity

According to Swartz (1997):

“A condition A is said to be necessary for a condition B, if (and only if) the

falsity (/nonexistence /non-occurrence) [as the case may be] of A

guarantees (or brings about) the falsity (/nonexistence /non-occurrence) of

B.”

That is, in the context of this study, to show that all the five theoretical
constructs are necessary for the theory. In Chapter 2, a choice rationale was
provided which offered two explanations to show that each of the five theoretical
constructs were necessary for a theory of developing software systems. In the first

explanation, Theory W was used as a maximized goal of the theory, and Theory

122

www.manaraa.com

W’s predicates led to the choice of the four remaining constructs. In the second
explanation, an argument was made to show how normative decision making per
se leads to the choice of decision, utility and dependency theories, and that since
in most cases the environment in which a software system is developed and
deployed is not static, controlling development is imperative. As such including
control theory was valid.

However, logical analysis also identified situations in which a poorly-
managed project could violate all four of the success realization conditions, and
still emerge successfully. For example, the project could have a satisfactory COTS

product become available just in time to be installed as the system solution.

Utility

Utility involves addressing the project’s critical success factors in cost-
effective ways. Several techniques discussed in the process case study provide
examples of cost-effective approaches. For example, the Results Chain method in
Step 2 helped identify the missing success-critical initiatives and stakeholders in an
efficient way. For another example, the risk-driven inspection and test approaches
in Step 5 avoided wasting inspection and test time on trivial-value aspects of the
system. However, further progress could be made in providing such techniques,

as discussed under topics for further research.

123

www.manaraa.com

Generality

Generality is that it covers procedural, technical, economic, and human
concerns; and covers small and large systems. The 6-step process and its ability to
accommodate parallel activities and go-backs were sufficient to cover the Sierra
project’s procedural needs. Technical and economic concerns are addressed in the
use of dependency theory for cost, schedule, performance, and business case
analyses in Steps 3a, 4a, and 6b. Human concerns are the essence of Theory W
and utility theory, and of the SCS negotiations in Step 4. The six different case
studies had a variety of different organizational and project characteristics, and
the steps of the theory worked well for all of them. Again, further research would

help evaluate the generality of the theory and process.

Practicality

Practicality is that it supports practical needs for prediction, diagnosis,
solution synthesis, good-practice generation, and explanation. The theory draws
on a wide-variety of dependency models (e.g. cost, schedule, performance,
quality) to predict outcomes. In a stable, well-understood environment, managing
to the predictions usually produces a self-fulfilling prophecy. In less stable and less
familiar situations such as the Sierra case study, dependency theory was able to
diagnose risks such as missing stakeholders in Step 2, Theory W was able to

support synthesis of SCS win-win solutions in Step 4, and adaptive control theory

124

www.manaraa.com

was able to generate good value-achievement monitoring practices to support in-
process diagnosis and re-synthesis in Steps 5-6. The control theory necessary
conditions of observability and controllability were able to explain why traditional
earned value systems would not have addressed and resolved these value-domain
problems. Here again, further research and usage would likely provide additional

practical capabilities and evidence of practicality.

Preciseness

Preciseness is that it provides situation-specific and accurate guidance. The
theory is no more (and no less) accurate than its constituent theories in predicting
outcomes of unprecedented situations, but it is able to provide situation-specific
guidance, as shown in its application to the Sierra supply-chain project. Also,
several examples were provided in the SMB-VBSE case study to show how the
theory would have generated different guidance in different situations, such as
with the distributor management’s reversal of a win-win agreement on a product
definition standard in Step 4, and with the ITV COTS vendor’s change of direction

in Steps 5 and 6.

Falsifiability

Falsifiability is the ability to be empirically refuted. The SMB-VBSE case
study identified a particular situation in which application of the theory could not

produce a win-win solution, leading to a timely decision to cancel the project. This

125

www.manaraa.com

involved incompatible and non-negotiable SCS win conditions about Initial
Operational Capability content and schedule in Step 4. A similar outcome could
have resulted from the distributor management change of direction in Step 5.
Additionally, there are several other situations where the theory will not
work. Some such situations include when:
e People disguise their true win conditions
e People like to win by making others losers
e There can only be one winner
However, many apparent only-one-winner or zero-sum-game situations
can be turned into win-win situations by expanding the option space. A good
example is provided in Getting to Yes (Fisher-Ury, 1981), in which a boundary-line
location stalemate on ownership of the Sinai Desert between Egypt and Israel was
resolved by creating a new option: the land was given back to Egypt, satisfying its
territorial win condition, but it was turned into a demilitarized zone, satisfying

Israel’s security win condition.

Implications

As discussed above, the theory has proved in logical analysis to be
necessary and sufficient, except for the special cases discussed above. It also

proved sufficient in application to the six case studies. Overall, the theory provides

126

www.manharaa.com

a robust framework for decision makers to reason about their project decisions,
and to assess potential value-domain risks in their approach.

Additionally, the 6-step process framework provides principled process
guidance for software engineers to implement value-based approaches in the

development of software systems.

Future Work

To successfully hand over the baton to any potential candidate interested
in pursuing this research further, it is imperative that the experiential knowledge
gained is also made available to such a candidate. To this end, this section
discusses some of the challenges associated with continuing this study, explains
why this study is an attractive proposition, and finally offers a few low hanging

opportunities to any such interested candidate.

Challenges

There are many significant challenges that lay ahead for any successor of this
research. This is because (1) process and management research in engineering
and elsewhere typically takes over a decade to become validated on large end-to-
end projects; (2) an interdisciplinary theory as proposed in this study requires an
enormous amount of time and other resources that are often severely limited in
dissertation-type research projects; (3) the “broadness” of this theory — involving

the intricate details of organizational characteristics, external environment,
127

www.manaraa.com

people, process and product, is its strength but also its weakness, at least in terms
of practicality of validation. It is very hard to find good data even within a project,
let alone the organization and institution levels; (4) the “interdisciplinary” nature
of this theory has some serious consequences for continuing it as dissertation-
type research. For example, when done within the confines of “engineering”,
many traditional-engineering dissertation committees will find such theories to be
beyond the scope of engineering. Additionally, inconsistencies in terminology and
ideology across various disciplines not only make convergence hard, but also
extremely time consuming. Bearing these challenges in mind, perseverance and an

iterative approach is highly recommended.

A Case for Future Work

In spite of all the challenges, a strong case can still be made in continuing
this research. First, this research is novel. Very little (some of the exceptions
include the chapters in Biffl et al. (2005); Boehm and Turner (2004); Rifkin (2006);
Huang and Boehm (2006)) has been said about the role of stakeholder values and
organization context in developing software systems. In particular, application of
contingency theory (as an organization theory), to software systems engineering
has been extremely limited (except for Rifkin (2006), but even his application was

very limited).

128

www.manaraa.com

Two, there are enormous opportunities for making strong contributions in
engineering, and perhaps in other fields as well. Decisions about software systems
today are largely made in a value-restricted flatland, where the key differentiators
between choices are either “institutional” factors (right vs. wrong, legitimacy etc.),
or “traditional” factors (limited to cost, schedule, and defect rate). These factors
can be sufficient in some situations while completely ineffective in others. Value-
based approaches provide better reasoning tools for decision making, and thus

expectedly yield better outcomes.

Low Hanging Opportunities

Many avenues exist in strengthening this research — from further
explicating each of the theoretical constructs to conducting experiments for
guantitative analysis. However, some of these are more attractive than the rest.
This study recommends that future work should focus on at least the following
two dimensions — (1) enhancing robustness of the theory and (2) focusing on its
applicability (gearing for practice) to at least some of the success critical decisions

that are made in the development of software systems.

Theory Robustness

Robustness of the theory refers to the resilience of the theory in
unprecedented situations. One approach for enhancing robustness of the theory is

to examine another sample set of case studies and determining under what

129

www.manaraa.com

conditions it would have failed. Another approach would be to capture
experiential knowledge through forms such as peer reviews and wideband
delphis. This study uses contingency theory as a form of dependency theory.
However, as discussed in Chapter 2, there are at least two other well developed
theories that can serve as a form of dependency theory — institutional theory and
resource dependency theory. Application of either or both may have very
attractive returns in understanding the limitations of engineering methods for
developing software systems. For example, contingency theory does not explain
compliance, legitimacy, or mimetic behaviors of organizations as explained by
institutional theory.

Within the realm of contingency theory too, there are many potential
opportunities for increasing robustness. For example, Burton and Obel (2004)
identify at least 20 different organizational contingencies (dependencies) that
could potentially affect how software systems are developed. This study’s scope
involved discussion of only few of them were discussed, and with limited empirical
support. Each such dependency (for example highly centralized structure with risk-
averse management style) is a research topic per se, and requires empirical
evidence.

Additionally, the concept of power struggle is not addressed in this study
since there has been little said about the role of power by contingency theorists. It

would be unwise to ignore it, albeit there is an implicit notion of power in Burton

130

www.manaraa.com

and Obel’s (2004) management style and structural factors. Even if alternative
approaches to contingency theory (such as institutional theory) are not examined,
it may be useful to know the extent to which power, legitimacy etc., threaten the
validity of this study. Finally, and most importantly, all assumptions made in this

study should be revisited as more media of validation become available.

Gearing for Practice

The future of the VBSE theory depends on the extent to which it captures
attention from the practitioner community. To attract practitioners, future studies
must also consider how best to package this study (theory and process
framework) in forms that will make direct contribution to some of the problems
practitioners face in decision making.

For example, Huang and Boehm’s (2006) value-based software quality
assurance (VBSQA) model shows how stakeholder values can be incorporated into
the various investment decisions on testing and system quality. Similarly, models
for making investment decisions with respect to requirements and negotiation,
architecture and design, construction, will significantly add value to this study, and
make it attractive to practitioners.

Some other attractive specialty areas that could benefit from further
value-based extensions are value-based project monitoring and control, risk
management, product line reuse, software maintenance, corporate knowledge

management, and intellectual property management. Some initial results in these
131

www.manaraa.com

directions can be found in the chapters of Biffl et al. (2005). Further practical
research would involve elaboration of key value-based practices, such as rapid
determination of stakeholders’ value propositions and priorities; techniques for
creating options for mutual gain (some are provided in Fisher and Ury (1981) and
Boehm and Ross (1989)); and elaboration and specialization of the key value-
based practices to provide domain-specific guidance for particular application
domains. Such domain-specific research would frequently provide additional

insights for the general theory and process.

132

www.manharaa.com

References

Ahern, D. M., Clouse, A., Turner, R. CMMI Distilled: A Practical Introduction to
Integrated Process Improvement, Addison-Wesley, 2003.

Alexander, C., The Timeless Way of Building, Oxford University Press, 1979.

Al-Said, M., “Model Clashes”, Ph.D. Dissertation, University of Southern California,
2003

Argyris, C., Organizational Learning, Addison-Wesley, 1978.

Austin, R., Measuring and Managing Performance in Organizations, Dorset House
1996.

Babcock, C., “New Jersey Motorists in Software Jam,” ComputerWorld, vol.
September, pp. 1-6, 1985.

Baldwin, C., Clark, K., Magretta, J., Dyer, J., Fisher, M., and Fites, D., Managing the
Value Chain, Harvard Business School Press, 2000.

Bell, D., Raiffa, H., and Tversky, A. (eds.), Decision Making: Descriptive, Normative,
and Prescriptive Interactions, Cambridge University Press, 1988.

Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Gruenbacher, P. (eds.), Value-Based
Software Engineering, Springer Verlag, 2005.

Blackwell, D., Girshick, M., Theory of Games and Statistical Decisions, Wiley, 1954.

Blanchard, B. and Fabrycky, W., Systems Engineering and Analysis, Prentice Hall,
1988.

Boehm B., Jain, A., "A Value-Based Theory of Systems Engineering,"” in Proceedings
of INCOSE Symposium Orlando, Florida, 2006.

Boehm B., Jain, A., “A Value-Based Theory of Systems Engineering: Identifying and
Explaining Dependencies”, Proceedings, INCOSE, 2007.

133

www.manaraa.com

Boehm B., Jain, A., “An Initial Theory of Value-Based Software Engineering”, in
Value-Based Software Engineering, Biffl, S., Aurum, A., Boehm, B.,
Erdogmus, H., Gruenbacher, P. (eds.), Springer Verlag, 2005, pp 15-37.

Boehm B., Turner, R., Balancing Agility and Discipline: A Guide for the Perplexed,
Addison Wesley, 2004.

Boehm, B. et al., Characteristics of Software Quality, TRW Report to NBS, 1973
(also North Holland, 1978).

Boehm, B., "Boehm's Top 10 Risk List" (http://csse.usc.edu/BoehmsTop10),
accessed 03/29/2007.

Boehm, B., “A Spiral Model for Software Development and Enhancement”, IEEE
Computer, pp. 61-72, 1988.

Boehm, B., “Software and Its Impact: A Quantitative Assessment”, Datamation, pp
48-59, 1973.

Boehm, B., and Hansen, W. "The Spiral Model as a Tool for Evolutionary
Acquisition™, CrossTalk, May 2001.

Boehm, B., Bose, P., “A Collaborative Spiral Software Process Model Based on
Theory W”, Proceedings, ICSP 3, IEEE, October 1994.

Boehm, B., Huang, L., “Value-Based Software Engineering: A Case Study”, IEEE
Computer, March 2003, pp. 21-29.

Boehm, B., In, H., "Identifying Quality-Requirement Conflicts", IEEE Software, Vol.
13, No. 2, pp. 25-35, March 1996.

Boehm, B., Port, D., Al-Said, M., "Avoiding the Software Model-Clash Spiderweb,"
Computer, vol. 33, no. 11, pp. 120-122, 2000.

Boehm, B., Ross, R., “Theory-W Software Project Management: Principles and
Examples”, IEEE Transactions in Software Engineering, pp 902-916, July
1989.

Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

Boehm, B., Tutorial: Software Risk Management, IEEE Computer Society Press,
1989.

134

www.manaraa.com

Booher, H. (ed.), Handbook of Human Systems Integration, Wiley, 2003.

Borchers, G., “The Software Engineering Impacts of Cultural Factors on Multi-
cultural Software Development Teams”, Proceedings, ICSE, pp. 540 -545,
2003.

Brogan, W., Modern Control Theory, Prentice Hall, 1974.

Bullock, J., “Calculating the Value of Testing”, Software Testing and Quality
Engineering, Volume 2, Issue 3, pp. 56-62, 2000.

Burns, R., To a Mouse, November 1785.
Burns, T., Stalker, G. M., The Management of Innovation, Tavistok, 1961.

Burrell, G., Morgan, G., Sociological Paradigms and Organizational Analysis, Gower
Publishing Company Limited, 1979.

Burton R.M. & Obel B., Strategic Organizational Diagnostics and Design: The
Dynamics of Fit. Kluwer Academic Publishers, 2004.

Carr, D., “Sweet Victory”, Baseline, December 2002.

Chandler, A. D., Strategy and Structure: Chapters in the History of the Industrial
Enterprises, MIT Press, 1962.

Checkland, P., Systems Thinking, Systems Practice, Wiley, 1981.

Chung, L. et al., Non-Functional Requirements in Software Engineering, Kluwer,
1999.

Clements, P., et al., Documenting Software Architectures: Views and Beyond,
Addison Wesley, 2003

Clements, P., Kazman, R., and Klein, M., Evaluating Software Architecture:
Methods and Case Studies, Addison Wesley, 2002.

Cohen, M. D., March, J. G., and Olsen, J. P., “A Garbage Can Model of
Organizational Choice”, Administrative Science Quarterly, vol. 17(1), pp. 1-
25, 1972.

135

www.manaraa.com

Croshy, P., Quality is Free, New York: McGraw-Hill, 1979.

Daft, R., Organization Theory and Design, South-Western College Publications, 8th
ed., 2003.

Danto A. and S. Morgenbesser S. (eds.), Philosophy of Science, Meridian Books,
1960.

Dantzig, G., Linear Programming and Extensions, Princeton U. Press, 1963.
Debreu, G., Theory of Value, Wiley, 1959.

DeMarco, T., Controlling Software Projects: Management, Measurement, and
Estimates, Yourdon Press, 1986.

Deming, W. E., Out of the Crisis, MIT Press, 1986.

DiMaggio, P. J., “Interest and Agency in Institutional Theory”, in L. G. Zucker, ed.,
Institutional Patterns and Organizations, Ballinger, 1988.

DiMaggio, P. J., and Powell, W. W., "The Iron Cage Revisited: Institutional
Isomorphism and Collective Rationality in Organizational Fields", American
Sociological Review, vol. 48 (2), pp. 147-60, 1983.

DiMaggio, P. J., and Powell, W. W., The New Institutionalism in Organizational
Analysis, University of Chicago, 1991.

Donaldson, L., The Contingency Theory of Organizations, Sage, 2001.

Dupuit, J., “On the Measurement of the Utility of Public Works”, Translated by R.
H. Barback, International Economic Papers 2:83-110, 1844 (1952).

Favaro, J., “When the Pursuit of Quality Destroys Value”, IEEE Software, May 1996.
Finkelstein, A. and Dowell, J. "A Comedy of Errors: The London Ambulance Service
Case Study"”, Proceedings, 8th International Workshop on Software

Specification and Design, pp. 2, 1996.
Fishburn, P. C., The Foundations of Expected Utility, Dordrecht, 1982.

Fisher, R., Ury, W., Getting To Yes: Negotiating Agreement Without Giving In,
Houghton Mifflin, 1981.

136

www.manaraa.com

Flowers, S., Software Failure: Management Failure: Amazing Stories and
Cautionary Tales, John Wiley and Sons, 1996.

Ford, L., Fulkerson, D. R., Flows in Networks, Princeton University Press, 1962.
Forrester, J.W., Industrial Dynamics, Productivity Press, 1961.

Galbraith, J., Designing Complex Organizations, Addison Wesley, 1973.
Galbraith, J., Organization Design, Addison Wesley, 1977.

Gioia, D. A., and Pitre, E., “Multi-paradigm Perspectives on Theory Building”,
Academy of Management Review, vol. 15, pp. 584-602, 1990.

Glass, R., Software Runaways, Prentice Hall, 1998.

Glass, R., Facts and Fallacies of Software Engineering, Addison Wesley, 2003

Goodrick, E., and Salancik G. R., "Organizational Discretion in Responding to
Institutional Practices: Hospitals and Cesarean Births" in Administrative
Science Quarterly, vol. 41(1), pp. 1-28, 1996.

Hempel, C. G., and Oppenheim, P., “Problems of the Concept of General Law”, in
Danto, A. and Mogenbesser, S. (eds.), Philosophy of Science, Meridian
Books, 1960.

Highsmith, J., Adaptive Software Development, Dorset House, 2000.

Huang, L. and Boehm, B., “How Much Software Quality Investment Is Enough: A
Value-Based Approach”, Boehm IEEE Software, vol. 23, no. 5,
September/October, pp. 88-95, 2006.

Humphrey, W., Managing the Software Process, Addison Wesley, 1989.

J. Harsanyi, “A General Theory of Rational Behaviour in Game Situations”,
Econometrica, vol. 34, pp. 613-34, 1966.

Jones, C. , Software Development: A Rigorous Approach, Prentice Hall, 1980.

Jones, C., Assessment and Control of Software Risks, Yourdon Press Computing
Series, New Jersey, 1994,

137

www.manaraa.com

Juran, J. M., Gryna, F. M., Juran's Quality Control Handbook, Mcgraw-Hill, 1951.

Juristo, N., Moreno, A., and Acuna, S., A Software Process Model Handbook for
Incorporating People's Capabilities, Kluwer, 2005.

Kaplan, R., Norton, D., The Balanced Scorecard: Translating Strategy into Action,
Harvard Business School Press, 1996.

Kemerer, C. F., Software Project Management: Readings and Cases, McGraw-Hill,
1996.

Keeney, R. L., “Building Models of Values”, European Journal of Operational
Research, vol. 37, pp. 149-157, 1988.

Keeney, R. L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value
Tradeoffs, Cambridge University Press, 1976.

Kenneth, A., "Behaviour under Uncertainty and its Implications for Policy", in
Decision Making: Descriptive, Normative, and Prescriptive Interactions,
Bell, D., Raiffa, H., and Tversky, A. (eds.), pp. 167-192, Cambridge
University Press, 1988.

Larman, C., Agile and Iterative Development: A Manager's Guide, Addison Wesley,
2004.

Latimer, D., “Acquisition of Robotic System Capabilities”, Ph.D. Dissertation
Proposal, University of Southern California, 2007.

Lee, M. J., “Foundations of the WinWin Requirements Negotiation System”, Ph.D.
Dissertation, University of Southern California, 1996.

Leveson, N. G. & Turner, C. S., “An Investigation of the Therac-25 Accidents”,
Computer, vol. 26, no. 7, pp. 18-41., 1993.

LiGuo, H., Boehm, B., “How Much Software Quality Investment Is Enough: A Value-
Based Approach”, IEEE Software, vol. 23, no. 5, September/October, 2006.

Luce, R. D., Raiffa, H., Games and Decisions, John Wiley, 1957.

Luehrman, T. A., “Investment Opportunities as Real Options: Getting Started on
the Numbers” Harvard Business Review, July/August, pp 51-67, 1998.

138

www.manaraa.com

Mahoney, J. T., and Sanchez, R., “Building New Management Theory by Integrating
Processes and Products of Thought.” Journal of Management Inquiry, vol.
13 (1), pp. 34-47, 2004.

Mahoney, M.S., "Finding a History for Software Engineering"”, IEEE Annals of the
History of Computing, vol. 26-1, pp. 8-19, 2004.

March, J., and Simon, H., Organizations, Wiley, 1958.

March, J.G., Heath, C., A Primer On Decision Making: How Decisions Happen, Free
Press, 1994.

Marschack, J., Radner, R. The Economic Theory of Teams, Yale University Press,
1972.

Maslow, A. H., “A Theory of Human Motivation”, Psychological Review, 50, pp.
370-396, 1943.

Maslow, A., Motivation and Personality, Harper, 1954.

McConnell, S., Rapid Development, Microsoft Press, 1996.

Meyer, J. W., Scott, W R., and Strang, D., "Centralization, Fragmentation, and
School District Complexity." Administrative Science Quarterly, vol. 32(2),
pp. 186-201, 1987.

Meyer, J., and Rowan, B., “Institutionalized Organizations: Formal Structures as
Myth and Ceremony”, American Journal of Sociology, vol. 83, pp. 340-363,
1977.

Miller, R. W. and Collins, C. T., “Acceptance Testing”, Proceedings, XP Universe,
2001.

Mintzberg, H., Managers not MBAs: A Hard Look at the Soft Practice of Managing
and Management Development, Berrett-Koehler Publishers, 2004.

Mintzberg, H., Raisinghani, D., and Théorét, A. “The Structure of “Instructed”
Decision Processes”, Administrative Science Quarterly, vol. 21 pp. 246-275,
1976.

139

www.manaraa.com

Newnan, D., Lavelle, J., and Eschenbach, T., Engineering Economic Analysis, Oxford
University Press, 9th ed., 2004.

Parsons, T., Social Systems and the Evolution of Action Theory, The Free Press,
1977.

Paulk, M. et. al., Interpreting CMM for Small/Prototyping Projects, SEI, April 1994.

Perrow, C., "The Short and Glorious History of Organizational Theory,"
Organizational Dynamics, pp. 2-15, 1973.

Perrow, C., Complex Organizations: A Critical Essay, Scott Foresman, 1979.
Pettigrew, T. F., The Ultimate Attribution Error: Extending Allport's Cognitive
Analysis of Prejudice, Personality and Social Psychology Bulletin, vol. 5, pp.

461-476, 1979.

Pfeffer, J., and Salancik, G. R., The External Control of Organizations : A Resource
Dependence Perspective, Harper & Row, 1978.

Porter, M., "How Competitive Forces Shape Strategy", Harvard Business Review,
March/April, 1979

Raiffa, H., The Art and Science of Negotiation, Belknap/Harvard U. Press, 1982.
Rawils, J., Theory of Justice, Belknap/Harvard U. Press, 1971, 1999.

Rechtin, R., Systems Architecting: Creating and Building Complex Systems,
Prentice Hall, 1991.

Rifkin, S., “The Parsons Game: The First Simulation of Talcott Parsons’ Theory of
Action”, Ph.D. dissertation, George Washington University, 2004.

Royce, W. W, "Managing the Development of Large Software Systems",
Proceedings, IEEE WESCON, 1970.

Scott Morton, M., The Corporation of the 1990s: Information Technology and
Organization Transformation, Oxford University Press, 1991.

Scott, R., Organizations: Rational, Natural, and Open Systems, Prentice Hall, 2003.

Scott, W. R., Institutional Environments and Organizations, Sage, 1994.
140

www.manaraa.com

Scott, W. R., Organizations: Rational, Natural, and Open Systems, Prentice Hall,
2003.

Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

Simon, H., Models of Man, Wiley, 1957.
Sommerville, I., Software Engineering, 5th ed, Addison Wesley, 1999.
Standish Group, Chaos Chronicles, Standish Group, 2004.

Sterman, J.D, Business Dynamics — Systems Thinking and Modelling in a Complex
World, McGraw-Hill, 2000.

Swartz, N., "The Concepts of Necessary Conditions and Sufficient Conditions™
(http://www.sfu.ca/philosophy/swartz/conditions1.htm), accessed
04/01/2007.

Thompson, J. D. Organizations in Action: Social Science Bases of Administrative
Theory, McGraw-Hill, New York, 1967

Thorp, J., DMR’s Center for Strategic Leadership, The Information Paradox:
Realizing the Benefits of Information Technology, McGraw-Hill, 1998.

Torraco, R. J., “Theory-building Research Methods”, in Swanson, R. A., and
Holton, E. F. Ill (eds.), Human Resource Development Handbook: Linking
Research and Practice, pp. 114-137, Berrett-Koehler, 1997.

Treacy, M. and Wiersema, F., The Discipline of Market Leaders, Perseus
Publishing, 1997.

Tversky, A., and Kahneman, D., "Rational Choice and the Framing of Decisions", in
Decision Making: Descriptive, Normative, and Prescriptive Interactions,
Bell, D., Raiffa, H., and Tversky, A. (eds.), pp. 167-192, Cambridge
University Press, 1988.

von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior.
Princeton University Press, 1944,

141

www.manaraa.com

Warfield J.N., A Science of Generic Design: Managing Complexity Through Systems
Design, lowa State, University Press, 1995.

Weinberg, R. S., "Prototyping and the Systems Development Life Cycle", Info. Syst.
Management, pp. 47-53, 1991.

Wiest, J, D., Levy, F. K., A Management Guide to PERT/CPM, Prentice Hall, 1977.

Woodward, J., Industrial Organization: Behaviour and Control, Oxford University
Press, 1970.

Wymore, A. W., A Mathematical Theory of Systems Engineering: The Elements,
Wiley, New York, 1967.

142

www.manharaa.com

Appendices

Appendix A: Analysis of UniWord
Background

This case study was published in (Boehm, 1981). Universal Micros, Inc. was
developing a new product: An advanced personal computer named UniWindow.
In order to make its product more appealing to its potential customers, Universal
Micros decided to contract with several software houses to produce software
packages for its new personal computer. One such package was the UniWord — a
Word Processor for UniWindow that would be developed by the winning bidder to
the Request for Proposal that was based on a set of high-level specifications
provided by Universal Micros.

SoftWizards, Inc., a software contractor, was selected as the winning
bidder among four other companies that had also bid for the contract. With some
past experiences with developing text editors, Soft Wizards believed that winning
this contract would provide a significant value addition to the company.
Therefore, in excitement of this prospective opportunity, SoftWizards agreed to
build the product with a much lower price tag than its competitors.

Within a few months into the project, problems began overshadowing
success. Toward the expected completion date, SoftWizards failed to deliver the

143

www.manharaa.com

product. This initiated a project audit by Universal Micros, which forms the basis

of this post-hoc analysis.

VBSE Theory Analysis

Did the project identify its stakeholders' value propositions?

With a few exceptions, the project did not identify its stakeholders’ value
propositions. The project failed to identify all the stakeholders that were critical to
the success of the product. As such, value propositions of unidentified
stakeholders were therefore ignored. These stakeholders include product
maintainers; Universal Micro’s marketing staff; and proxy users representing the
consumers at large. Each such stakeholder would have brought in value-
propositions that could have, if not alleviate, provide the much required visibility
and conformity to requirements. For example, proxy users would have identified
poor interfaces, the marketing staff could have helped prioritize requirements
based on minimal features required for a successful product exhibit, and the

maintainers could have identified problems with vague specifications.

Did the project prioritize requirements?

There is insufficient evidence for a definitive answer, however it appears that
more emphasis was placed on identifying the best technical approach for how the

word processor should operate than on any prioritization activities (page 2,

144

www.manaraa.com

paragraph 1). This assessment is also supported by the fact that there were no
interactions between the clients and developers relating to prototypes, core
capability demonstrations that usually form the thrust for reprioritizations (page
4, paragraphs 5-6). Further, when a schedule crisis became unmanageable
towards the expected delivery date (page 2, paragraphs 11-12), SoftWizards

elected to add new development personnel over reprioritization.

Did the project conduct expectations management?

No, the project operated on wishful thinking over pragmatism. First, any source
selection based on lowest-cost-winner leaves little room for expectations
management (except for cost/price) during project initiation. Second, while
problems had started surfacing as early as the second month into the project,
none of these indicators initiate any form of interaction between the client and

developers until towards the end of expected completion date.

Did the project engage in prototyping?
As discussed before, there were no interactions between the clients and

developers relating to prototypes, core capability demonstrations that usually

form the thrust for reprioritizations (page 4, paragraphs 5-6)

Did the project identify its success-critical stakeholders?
145

www.manaraa.com

Few. As explained before the project failed to identify all the stakeholders that
were critical to the success of the product. As such, value propositions of
unidentified stakeholders were therefore ignored. These stakeholders included
product maintainers; Universal Micro’s marketing staff; and proxy users

representing the consumers at large.

Did the project identify its organizational dependencies?

There is insufficient evidence to make this assessment.

Did the project identify interdependencies between stakeholder

values?

No. However, there are indications of interdependencies between stakeholder
values that were neither identified nor resolved. First, few members in the
development team had their values rooted in self-constructed theories for best
way to develop the product. The impact of these conflicting values was large
enough for key personnel to quit and to significantly deplete the team’s morale
(page 2, paragraph 4; page 4, paragraph 8). Second, clients placing value on cost
and schedule, marketing staff requiring state-of-the-art features, and developers
on getting the product to work in time and cost was another key interdependency

that was overlooked.

146

www.manharaa.com

Did the project identify product interdependencies?

Not until they surfaced on their own, however it was too late by then. The report
cites numerous occasions where parts of the product refused to work with one

another (page 2, paragraphs 2-4, 7; page 4, paragraph 1).

Did the project identify process interdependencies?

No. This is reasonably clear in many instances — insufficient test data and drivers
available for testing when required (page 2, paragraph 2); vague schedule,
abstract Gantt charts (page 4, paragraphs 4-6); and improper configuration

management (page 4, paragraph 3).

Did the project negotiate a win-win product/process plan?

Doing source selection through lowest-cost-winner is usually not a win-win.
However, even if we assume that was the case, having not identified all success-
critical stakeholders or their win conditions destabilized the win-win equilibrium.
For example, the development team’s morale was very low; they didn’t have job
stability (page 4, paragraph 8) -- these are few indications that their win

conditions were not factored in.

147

www.manharaa.com

Did the project use risk to establish feasibility and commitment?

Perhaps one of the biggest shortcomings of the project was not having any form
of risk management to help steer its direction. For example, measuring level of
difficulty on certain product features either through prototyping or group
assessments would have helped to determine its corresponding risk and thereby
allowed decision makers to allocate resources appropriately and in some cases
identify a fallback. In the case of this project all features were treated equal.
Finally, a nine-month schedule to deliver a word processor with six developers
also doubling up as designers and testers was overly ambitious. Schedule was
perhaps one of their biggest risk factors, however, still, any risk management was

missing.

Did the project adapt its plans to key changes in success-critical

stakeholders’ value propositions?

The most prominent change in value propositions of success-critical stakeholders
was when the development team realized how far behind schedule it was. While it
was too late to introduce new personnel into the team, credit is given for adapting
to resource needs. However, what the project needed was rethinking its plans in
terms of what’s doable and what’s not — basically expectations management and

reprioritization in the form of simple software project planning.

148

www.manaraa.com

Did the project have a business case?

There is insufficient evidence to make this assessment. While the project
describes SoftWizard’s winning bid (page 1, paragraph 9) ($300,000), and a profit
sharing ($10 per license) element, the origin of these numbers, costs and

projected benefits were not been discussed.

Did the project use stakeholder values for its product or process

related decisions (initially or during changes)?

Both product and process related decisions were made without having any
stakeholder values in context. Product decisions, for example, were made based
on personal preferences of developers (page 2, paragraph 1-2), whereas process

decisions were usually just based on project manager’s insights.

Did the project establish a control mechanism to track progress?

High level Gantt charts and team members’ weekly reports were the two tracking
mechanisms used through the course of the project. Both the mechanisms
however seemed of little use as they would stagnate at about 90% for each task

(page 4, paragraph 6).

Did the project monitor and measure stakeholder value?

149

www.manharaa.com

As explained above, high level Gantt charts and team members’ weekly reports
were the two tracking mechanisms used through the course of the project. Since

they only tracked progress, the project clearly failed to monitor and measure most

stakeholder values.

150

www.manharaa.com

Appendix B: Analysis of MasterNet
Background

This case study was published in (Glass, 1998). In 1982, Bank of America, along
with Seattle-First National, United Virginia, and Philadelphia National initiated the
development of a state-of the-art trust accounting system. Having internally failed
once in doing so and losing $6 million, the consortium of banks contracted
Premier Systems to develop their trust accounting system that would manage
their $38 billion portfolio in institutional and personal trusts.

Premier Systems was a relatively new company but its leadership, primarily
Stephen Katz, had a strong background in financial systems and some success
developing such systems through his previous company. With some initial
research into the new system that the consortium of banks required, Premier
began developing the banks’ trust accounting system and promised delivery
within 11 months.

After spending $78 million on development and losses incurred due to the
new system’s malfunctions, the banks finally handed their trust business to a
subsidiary on account of inability to handle trust related services. Along with
financial losses, plenty of bad press such as “$80 Million MIS Disaster” in
newspaper headlines, the bank’s image as a successful technological leader was

negatively changed forever.

151

www.manaraa.com

VBSE Theory Analysis

Did the project identify its stakeholders' value propositions?

Yes. The project orchestrated a very effective process in which a committee
representing every affected stakeholder was constituted to identify their
respective values. The committee met monthly to define requirements. Bank of
America’s staff met weekly with Premier’s designers to discuss progress and
additional needs. Also, expert users were brought-in from all banks to become
involved with the design process and provide continuity from design to
implementation (page 4, paragraph 1). Even the users’ value propositions, such as
comprehensive training programs, using videotape, classroom, and hands-on

terminals, and voice in acquisition, was identified.

Did the project prioritize requirements?

As critical it is to identify stakeholder value propositions, it is equally important to
prioritize requirements. Unfortunately, the MasterNet project miserably failed in
prioritizing its requirements. This also resonated with what some executives
internal to the bank felt — that is, the diversity of interests caused developers to

accommodate all needs instead of limiting functionality (page 18, paragraph 1).

Did the project conduct expectations management?

152

www.manaraa.com

While it is not clear if the project personnel engaged in any form of expectations
management, certain events in the timeline of MasterNet suggest that doing
expectations management was extremely critical to this project. For example,
Premier Systems in its first presentation to the bank’s executive board proposed a
state-of-the-art system (built around multiple systems working together
flawlessly) that featured unprecedented technology and promised wonders for
their trust services. Further, in the presentation the entire MasterNet system,
which eventually took five years and still was unfinished, and accumulated over
3.6 million lines of code was initially proposed as a mere 11-month minimal-risk

project.

Did the project engage in prototyping?

Prototyping helps reduce risks — VBSE 101. In a project as big and technically
complex as MasterNet, and with a $38 billion financial risk exposure, one would
expect to see a tremendous amount of prototyping efforts guiding the way to
success. However, neither Premier systems engaged itself in much prototyping,

nor did Bank of America require Premier to establish technical feasibility.

Did the project identify its success-critical stakeholders?

153

www.manharaa.com

Yes, as mentioned before the project receives extra credit for doing a wonderful
job of identifying success-critical stakeholders. The project formed a committee
representing every affected stakeholder in the participating banks. The committee
met monthly to define requirements. Also, expert users were brought-in from all
banks to become involved with the design process and provide continuity from

design to implementation.

Did the project identify its organizational dependencies?

To some extent, yes, they were successful in identifying organizational
dependencies. For example, the trust department was dependent on other
departments such as the banks’ securities and clearings departments. However, a
few critical dependencies remained unidentified. For example, when the
MasterNet project was initiated, the bank was undergoing a series of structural
changes that shifted authority in places that had a direct impact on project’s

success (page 4, paragraph 1) and those changes were not taken into account!

Did the project identify interdependencies between stakeholder

values?

154

www.manharaa.com

There is insufficient evidence to make any conclusions about the project
identifying interdependencies between stakeholder values, or resolving them
amicably. However, it is clear that there were a few indications of conflicting
interdependencies between stakeholder values. For example, Bank of America
had always used IBM mainframes and wanted to continue using them as their
choice of hardware — based on their preference for familiarity with IBM systems
and previous positive experiences. On the other hand, Premier Systems preferred
Prime’s hardware over IBM. Some other conflicting interdependencies also

emerged after Bank of America’s corporate restructuring.

Did the project identify product interdependencies?

MasterNet was a huge and complex project that interfaced with many
departments across various banks and organizations. As such product
interdependencies are bound to exist. While the report does not cite any specific
product interdependencies, joint meeting between the various departments in the
course of design and analysis make the researcher believe that product

interdependencies were identified.

Did the project identify process interdependencies?

155

www.manharaa.com

Other than identifying deployment related processes such as training, data
conversion, there is insufficient evidence to state if process interdependencies

were identified.

Did the project negotiate a win-win product/process plan?

As mentioned before, there were a few indications of conflicting
interdependencies between stakeholder values. For example, Bank of America
had always used IBM mainframes and wanted to continue using them as their
choice of hardware — based on their preference for familiarity with IBM systems
and previous positive experiences. On the other hand, Premier Systems preferred
Prime’s hardware over IBM. Eventually however, much of these conflicts were
resolved to establish a win-win. Unfortunately, the win-win equilibrium was
destabilized many times as MasterNet coasted through rough seas — and as will be

explained later there was little effort to restore the equilibrium.

Did the project use risk to establish feasibility and commitment?

The MasterNet project had a very strong commitment from all its success-critical
stakeholders however; they failed to conduct any risk management or establishing
technical and business feasibility.

While one objective of Bank of America was to also be able to sell the new

trust system to other banks, the MasterNet project was essentially a “catch-up

156

www.manaraa.com

with the world” project that bet its money on continuing status-quo rather than
generating new revenue. This is further supported by the fact that Bank of
America was still profiting $100 million a year through its trust services that were
still running the vintage system (page 10, paragraph 1). Therefore, undertaking
the risk of deploying a system that runs on 3.6 million lines of code and new
hardware, within 11 months, and carries a financial risk exposure of $38 billion is
perhaps the biggest indication risk imbalance.

As mentioned before, prototyping helps reduce risks. Much of MasterNet’s
failure was attributed to either software or hardware not scaling up to the needs
of Bank of America’s massive client base. However, neither Premier systems
engaged itself in much prototyping, nor did Bank of America require Premier to

establish technical feasibility.

Did the project adapt its plans to key changes in success-critical
stakeholders’ value propositions?

During the initial development phase there were no key changes in the success-
critical stakeholders’ value propositions. However, during the deployment of
MasterNet problems relating to technical glitches and corporate restructuring hurt
the team’s morale at a very rapid rate. Even though financial relief through
additional funding was provided by senior management, what the team actually

required was job stability, innovative leadership and a plan that could set things

157

www.manaraa.com

right (as observed by the research in various excerpts). For example, instead of
having the teams continue putting extended hours into the conversion and
deployment for the entire institutional trust business, they should have migrated

only select customers while planning to migrate the rest incrementally.

Did the project have a business case?

MasterNet project was a “catch-up with the world” project that bet its money on
continuing the status quo in ante rather than generating new revenue.
Additionally, Bank of America also hoped that it would be able to sell its new trust
system to other banks to break-even on their development costs. As such, the
benefits were strong enough to warrant a new system however a strong business
cases is certainly more than simply identifying the benefits and approving the
costs proposed by its vendor. For example, a quantifiable business case helps
facilitate product and process decisions. In the case of MasterNet, if Bank of
America had perhaps sketched a 5-year plan with incremental releases of
additional trust functionality, it would not only have limited its risk exposure but
also created a platform for offsetting costs related to MasterNet through earnings

on each incremental release.

158

www.manharaa.com

Did the project use stakeholder values for its product or process

related decisions (initially or during changes)?

There is insufficient evidence to make this assessment. However, since the
overseeing committee representing the various departments actively got involved

during product design and definition, it is assumed that they did.

Did the project establish a control mechanism to track progress?

MasterNet originally planned to be developed in 11 months, actually took five
years and yet still failed. Setting milestones at regular intervals and establishing a
control mechanism help stakeholders to check progress, reassess risk and adapt to
changes/problems. However, in the case of MasterNet no milestones or any other
effective controls were instrumented by the management. However, it is assumed
that perhaps there was some ad-hoc tracking mechanism in place that is not

documented.

Did the project monitor and measure stakeholder value?

Since the project did not have much of control mechanisms in place, stakeholder

values were neither monitored nor measured.

159

www.manharaa.com

Appendix C: Analysis of Windows for Word
Background

This case study was published in (Kemerer, 1997). Microsoft introduced its
first word processor for the PC called the PC Word in 1983. Having been
disappointed with lukewarm reviews and mediocre sales, Bill Gates in 1984
initiated the development of a new state-of-the-art word processor for its
Windows operating system codenamed Cashmere (later changed to Opus).

Although its schedule slipped significantly from the originally projected
ship date, Microsoft shipped Word for Windows with sales exceeding its own
projections, and received significant critical acclaim press — it was Microsoft's first

word processor to be rated higher than its competitor WordPerfect by Infoworld.

VBSE Theory Analysis

Did the project identify its stakeholders' value propositions?

In today’s world, most commercial products need to support and interface with a
variety of third party products — all seamlessly working together. Microsoft’s Word
for Windows however was a commercial product for the users of Microsoft
Windows in the 1980s and 90s. This meant, other than making the software work
on Windows, and impressing customers with some really advanced features, the

project was free from many of the constraints that have emerged in today’s world.

160

www.manaraa.com

This also means that the project then had few success-critical stakeholders
involved in the project, and even fewer value propositions. While implicitly, their

value propositions were identified.

Did the project prioritize requirements?

No, the project’s development approach was very informal from today’s standards
and identifying which features to implement next was left open to the

development team per their preferences.

Did the project conduct expectations management?

There is insufficient evidence to make any conclusions if the project took any

initiative of managing expectations of its stakeholders.

Did the project engage in prototyping?
In terms of functionality and look-and-feel, Microsoft’s Word for Mac and some
initial research done by experts in word processors served as a good prototype for
the development team.

As for prototyping for technical feasibility, Microsoft Word was required to
run on Windows, which was also a Microsoft product. This significantly reduced

the project’s technical risks.

161

www.manharaa.com

Did the project identify its success-critical stakeholders?

Yes, as mentioned before the project then had only a few success-critical
stakeholders all of which were already involved in the project — these included the
marketing, product and program management, user education and localization

teams (page 707, paragraph 3).

Did the project identify its organizational dependencies?

It is not clear if the project had any organizational dependencies other than the
fact that success of Windows as an operating system was tied to the success of
Word. Word’s success would also boost sales for Windows. On the flip side, its

failure could hurt its sales as well.

Did the project identify interdependencies between stakeholder

values?

Management’s time to market vs. development team’s need for flexibility and less
pressure was perhaps the biggest interdependency between stakeholder values.
While this was not explicitly identified in the project, it was still a well-known fact

to all involved (page 709, paragraphs 1-4).

Did the project identify product interdependencies?

162

www.manharaa.com

While the team created a set of formal specifications, product designs were
extremely informal. This is clearly evident through the problems they had in fixing
bugs, and through the amount of rework that went in adding features. Further,
how to implement features was left up to the developers rather than having them

adhere to any design.

Did the project identify process interdependencies?

In the beginning of the project, there was little if any process for developing Word.
However, as the product started getting developed and made progress, some
processes were instituted. In doing so, process interdependencies between

development, testing, stabilization, localization were also identified.

Did the project negotiate a win-win product/process plan?

Much of development of Word was influenced by Bill Gates. He set features, while
developers enjoyed freedom with technical aspects. Therefore other than
schedule pressure on the development team, it was a natural win-win

product/process plan (page 711, paragraph 7).

Did the project use risk to establish feasibility and commitment?

Given the facts that Microsoft Word was required to run on Windows, which was

also a Microsoft product; Microsoft’s success and experience with Word for
163

www.manaraa.com

Macintosh; few competitors in the Windows world; Microsoft enjoyed a
significantly low risk on the project. These factors were also good indicators of the

project’s feasibility.

Did the project adapt its plans to key changes in success-critical

stakeholders’ value propositions?

Yes, every new feature identified by Bill Gates and the senior management in their

reviews was added to the list of features to be implemented.

Did the project have a business case?

Yes, as explained before developing a word processor for the Windows operating
system was not only a low risk project for Microsoft but if successful, it would

cater to a huge customer base while also boosting sales for its operating system.

Did the project use stakeholder values for its product or process

related decisions (initially or during changes)?

Yes, all product related decisions were based on the features required and
approved by the senior management (specifically Bill Gates). However, time which

was also one of the key values was usually not factored in their decisions.

164

www.manharaa.com

Did the project establish a control mechanism to track progress?

Yes. While it is not clear what forms of control mechanisms were instrumented,
there is still evidence that the project had control mechanisms in place. The
project’s post-mortem report included statistics on estimations vs. actual (page

711, paragraph 5).

Did the project monitor and measure stakeholder value?

With respect to Microsoft Word, the key success-critical values were time, product
quality and market-dominating features for the senior management, and
development flexibility for the developers. Time, quality (in terms of identified
bugs) and features were all monitored and measured. Development flexibility on
the other hand is usually not measurable but the development team seemed to

enjoy their freedom.

165

www.manharaa.com

Appendix D: London Ambulance Service
Background

This case study was published in (Finkelstein, 1993). London Ambulance
Service (LAS) was in the business of dispatching ambulances to individuals
requiring urgent medical care. As such, when an emergency call is received by the
LAS, ambulances are dispatched based on an understanding of the nature of the
call and the availability of resources. In 1991, after LAS’ management felt that an
automated centralized ambulance service was essentially the way forward, it
formed a small teams and assigned it the responsibility for generating a request
for proposal (RFP), and thereby identify a contractor based on the meritocracy of
each proposal submitted. Schedule and cost were the two most critical drivers for
the team in identifying a suitable contractor.

After spending a few months developing an initial set of specifications for
such an automated systems that formed the basis of LAS’ RFP, the cheapest
tender was accepted and a new system was developed and introduced the
following year. The newly developed system however turned out to be a complete
failure, resulted in a few casualties and was eventually rejected by LAS. Today, it is

considered as a classic point of reference for “software disasters”.

166

www.manharaa.com

VBSE Theory Analysis

Did the project identify its stakeholders' value propositions?

With a few exceptions, the project did not identify its stakeholders’ value
propositions. The requirements specification document which formed the basis of
the request for proposal was written by an analyst contractor, the systems
manager and a few other individuals representing different departments.
However still, having a few representative managers seldom provide a good
estimation of the value propositions embedded in their respective teams.
Moreover, as will be explained later, the project failed to identify all the
stakeholders that were critical to the success of the product. As such, value
propositions of unidentified stakeholders were therefore ignored. These
stakeholders include ambulance crews and many other related departments (page

14, paragraph 3).

Did the project prioritize requirements?

No, the case study did not report any form of prioritization done either by LAS, or
its contractors. As discussed before in Chapter 5, the project’s approach was not
iterative, rather the general belief was that the entire system would be developed
in a single phase, and LAS will deploy the system in a cold turkey fashion. However

still, there is evidence that while system capabilities were not prioritized,

167

www.manaraa.com

identified defects were sorted in terms of their severity. And, priority was given to

defects in the order of their severity.

Did the project conduct expectations management?

No. While LAS was actively involved in routine project management activities and
well informed of many of the problems faced by contractors, there was no
expectations management done by either side in setting more realistic time
frames for CAD’s development. Also, while some level of training was provided to
the users of the new system, LAS should have also involved in setting the user
expectations towards the new system. This would have helped alleviate some of
the problems LAS had when users lost confidence in the system (page 3,

paragraph 1).

Did the project engage in prototyping?

No. LAS did not invest any time in prototyping the system. With an extremely
limited schedule, and little room for flexibility, the decision to not to prototype
may have seemed appropriate to the development team. However, with the all
uncertainty and risks the project embodied by using untested technologies and
devices (page 22, paragraph 3), the theory would seriously raise a red flag for any

project that chooses not to prototype.

168

www.manharaa.com

Did the project identify its success-critical stakeholders?

Some, however the project failed to identify rest of the stakeholders that were
also equally critical to the success of the product. These stakeholders include the
general public, ambulance crews, trade unions, and many other related

departments (page 14, paragraph 3).

Did the project identify its organizational dependencies?

No. As explained in Chapter 5, the LAS’ CAD falls into the category of socio-
technical systems that penetrate deeps into the human ecosystem and disrupts
existing social structures. In the case of LAS, developing a computer-aided
dispatch system would have significantly shifted power across many of its internal
departments. None of these were accounted for. Additionally, LAS’ dependency
on RHA in providing guidelines for system acquisition resulted in LAS giving more
emphasis on cost and schedule over contractor’s capability in delivering such a
system and past experience in managing risk. LAS was indeed a risky project,
however due to its organizational interdependency with RHA lacked the capability

to make this judgment early into the project.

Did the project identify interdependencies between stakeholder

values?

169

www.manharaa.com

No. The theory found that the project had very strong interdependencies between
stakeholder values, and some of them were conflicting in nature. For example, LAS
wanted Apricot Systems to prime the contract. Apricot instead felt that this was
not in their favor as they did not have complete control over the project and
therefore left the onus on SO to prime the contract. SO on the other hand felt that
Apricot should prime the contract as it would relieve them of the pressures
related to taking the lead. An another example involves users’ limited enthusiasm
with giving up control to an automated system, and also having to relocate per the

needs of the new system disrupting their internal social structure.

Did the project identify product interdependencies?

Some. The study has limited evidence through a design document that shows how
the various components of the product integrate with each other. However, based
on some of the problems reported in difficulties in making the different systems
talk together in a graceful fashion, it is concluded that only few of the many
product interdependencies were identifies. This is also consistent with the limited

time contractors had in designing the system.

Did the project identify process interdependencies?

LAS chose the PRINCE Project Management Method to guide the project towards

success. Unfortunately, none of the stakeholders had any experience with PRINCE

170

www.manaraa.com

and therefore lacked the capability to identify the many process
interdependencies that are rooted in most software projects. The study also
reported that due to the team’s lack of direct experience with PRINCE, it was not
sincerely followed through the course of the project (page 21, paragraph 3). This

resonates with the problems the theory identified.

Did the project negotiate a win-win product/process plan?

No. LAS’ planning was either based on policies it inherited from RHA, or driven by
the technologies that Apricot and SO brought in. A win-win product/process plan
is built around the value propositions of its stakeholders as opposed to policy or
technology driven. Additionally, some planning elements were a direct outcome of
bad guesses. For example, setting an inflexible timeframe of one year for a system
as complex as CAD was essentially a bad guess which had no justification, or any

room for negotiation.

Did the project use risk to establish feasibility and commitment?

Risk was perhaps the most underused (next to negligible) element in this
particular project as though there was absolutely no amount of risk involved in
developing an ambulance dispatcher service. Further, while commitment was
established through inked contracts and management orders, feasibility like risk

remained an anonymous element through the entire course of the project.
171

www.manaraa.com

Did the project adapt its plans to key changes in success-critical

stakeholders’ value propositions?

No. The most convincing evidence to this assessment is the fact that LAS rather
chose to deploy a buggy system against the wishes of many involved than

reevaluate its priorities with respect to its current state of affairs.

Did the project have a business case?

Yes, LAS would have greatly benefited from a successful implementation of an
automated ambulance dispatch system by not only meeting the ORCON standards
emergency response times, but also in providing a better and more effective

system in the interest of public welfare.

Did the project use stakeholder values for its product or process

related decisions (initially or during changes)?

No. Product and process related decisions were either inherited from RHA, or
technologically driven. An example follows: in spite of the team’s lack of direct
expertise with PRINCE Project Management Method, it was chosen as the guiding

process for the project.

Did the project establish a control mechanism to track progress?

172

www.manharaa.com

Itis not clear if the project had established any control mechanism to track
progress however, based on hindsight knowledge it appears that it indeed did not

have any control mechanism in place.

Did the project monitor and measure stakeholder value?

No, stakeholder values were neither monitored nor measured. As indicated
before, the project had severely failed in identifying stakeholder values, as such

there was nothing to monitor and measure.

173

www.manharaa.com

Appendix E: CMU Surface Assessment Robot
Background

This case study was published in (Latimer, 2007). The study examines a project
undertaken by CMU as a contractor to build a robot that can inspect the
smoothness of a road surface while maintaining the same inspection quality as the
manual method historically employed. While the project successfully delivered a
robot that was designed right to the specifications, and if made operational would
have also satisfied the estimated return on investment, it was however not

transitioned into operational use.

VBSE Theory Analysis

Did the project identify its stakeholders' value propositions?

Yes, the project identified all of its success-critical stakeholders (except for one
that emerged later in the project — the acquirers of the acquiring organization)
and their value propositions. Through all the phases of the development, success-
critical stakeholders such as engineers, managers, quality assurance personnel had
come together in identification of key propositions, and in reviewing progress with
respect to set milestones (page 38, paragraph 2; page 32, paragraph 6).

Did the project prioritize requirements?

174

www.manharaa.com

While the documented case does not explicitly support this conclusion,
statements such as “verify and validate the requirements to ensure no “gold-
plating” of requirements” (page 33, paragraph 3), along with efforts invested
towards prototyping are indicative of prioritization. Further, personal
communication with the author of this case who was also involved in the project
verified that requirements prioritization was done in multiple review sessions

through the course of this project.
Did the project conduct expectations management?

Yes, stakeholders from the acquiring organization along with other critical
stakeholders consistently participated in concept formation, requirements, design
and reviews. Project’s current progress and future goals were effectively

communicated to all of them.

Did the project engage in prototyping?

The project frequently engaged in prototyping. Many requirements were
validated through initial prototypes, thereby also establishing technical feasibility
for the project (pages 32-33).

Did the project identify its success-critical stakeholders?

Yes, as mentioned before the project identified all of its success-critical
stakeholders (except for one that emerged later in the project — the acquirers of
the acquiring organization) and their value propositions. Through all the phases of

the development, success-critical stakeholders such as engineers, managers,
175

www.manaraa.com

quality assurance personnel came together in identification of key propositions,
and in reviewing progress with respect to set milestones (page 38, paragraph 2;
page 32, paragraph 6).

Did the project identify its organizational dependencies?

No, and this unfortunately contributed as the primary reason for the project’s
failure. The acquiring organization of this robot was also being acquired by
another bigger organization that preferred to buy well-established off-the-shelf
products over developing them in-house. According to the VBSE theory,
identifying organizational dependencies is critical to project success because along
with new stakeholders, they also bring in process/product/value dependencies
that often conflict with existing structure. Further, in the case of this project, this
new organizational dependency had created a fundamental shift in organizational

control.

Did the project identify interdependencies between stakeholder

values?

While there is no evidence in the documented case to make any conclusion, there
is no evidence to the contrary as well. In hindsight however, with the new
organizational dependency that had formed in the organization, there were

indeed a few interdependencies between stakeholder values.

Did the project identify product interdependencies?

176

www.manaraa.com

Yes. The project had devoted a lot of effort towards tracing dependencies
between requirements and design elements across the various design phases
(page 34, paragraph 6).

Did the project identify process interdependencies?

Yes, project processes such as milestones were carefully planned. For example,
the project had established a timeline (page 32, paragraph 5) for various project
phases, each phase had its associated set of goals and exit criteria that was

reviewed consistently and continuously.
Did the project negotiate a win-win product/process plan?

Yes, as mentioned before, the success-critical stakeholders periodically met to
negotiate and decide a win-win product and process. In certain situations, for
example in the preliminary design phase, when a particular solution was disliked
by a few stakeholders, it was always documented and acted upon either by
revisiting the requirements, or adding constraints to existing plans.

Did the project use risk to establish feasibility and commitment?

Yes. Risk was a constant factor in making project-related decisions. For example,
all requirements were evaluated based on their level of risk. Low-risk
requirements/technologies were not prototypes. Emphasis was given to the
requirements that carried significant risk, and commitment or feasibility was

either established through prototyping or group’s consensus on accepting risk.

177

www.manaraa.com

Did the project adapt its plans to key changes in success-critical

stakeholders’ value propositions?

No. As explained before, the project was unable to identify its organizational
dependencies and thereby factor in new stakeholders and their value
propositions.

Did the project have a business case?

Yes. The project had a very strong business case. Their projected return on
investment was in the order of 1:100 (page 28, paragraph 3). The to-be-developed
system (robot) would have replaced an existing manual process the organization

was using in assessing road surfaces.

Did the project use stakeholder values for its product or process

related decisions (initially or during changes)?

Yes. As discussed before, risk, personal dislikes and other stakeholder values were
used to steer product and process related decisions. Prototyping was based on
stakeholders’ comfort level and acceptable risk, design decisions were made in
alignment with engineers’ past experiences and preferences.

Did the project establish a control mechanism to track progress?

Yes. The team had weekly meetings to track and discuss progress. Further a
project management plan, and a life cycle management was also created which

helped steer the course of development (page 32, paragraphs 2-3).

178

www.manaraa.com

Did the project monitor and measure stakeholder value?

Yes. Each implementation unit was mostly derived from an existing prototype was
traced to a design document, and a requirements document. The requirements
represented a good share of stakeholder values. Further, the life cycle plan,
project management plan, design reviews, and weekly meetings served as a way

to orchestrate project planning, monitoring and control.

179

www.manharaa.com

